
UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 1

Chapter 1 Introduction

1. Introduction

UBI Fingerprint 7.11
Programmer's Guide
Edition 1, February 1998
Part No. 1-960454-00

1.1 Contents

1. Introduction 1.1 Contents.. 1
1.2 Preface.. 6
1.3 News in UBI Fingerprint 7.11... 7

2. Getting Started 2.1 Computer Connection... 8
2.2 Check Paper Supply.. 8
2.3 Turn On the Printer... 9
2.4 UBI Shell Startup Program.. 9
2.5 No Startup Program... 9
2.6 Custom-Made Startup Program... 9
2.7 Breaking a Startup Program.. 10
2.8 Communication Test... 11

3. Creating a Simple Label 3.1 Introduction... 12
3.2 Printing a Box... 12
3.3 Printing a Image.. 13
3.4 Printing a Bar Code... 13
3.5 Printing Human Readables.. 13
3.6 Printing Text... 14
3.7 Listing the Program... 14
3.8 Changing a Program Line.. 14
3.9 Saving the Program... 15
3.10 Error Handling.. 15
3.11 Renumbering Lines... 15
3.12 Merging Programs... 16
3.13 Using the Print Key... 16

4. Terminology and Syntax 4.1 Lines... 17
4.2 Statements... 18
4.3 Functions.. 18
4.4 Other Instructions.. 18
4.5 Expressions... 18
4.6 Constants.. 19
4.7 Variables... 19
4.8 Keyword List.. 20
4.9 Operators.. 21

• Arithmetic Operators... 21
• Relational Operators.. 21
• Logical Operators.. 21

4.10 Devices... 22
cont'd.

Chapter 1

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 2

Chapter 1 Introduction

1.1 Contents, cont'd.

5. UBI Fingerprint Programming 5.1 Introduction... 24
5.2 Editing Methods:... 24

• Line-by Line Method (non-intelligent terminal)......................... 24
• Copy & Paste Method (Windows; Notepad/Terminal)............... 25
• Send Text Method (Windows; Text file via Terminal)............... 25

5.3 Immediate Mode... 25
5.4 Programming Mode.. 27

• Programming with Line Numbers.. 28
• Programming without Line Numbers... 29
• Programming Instructions.. 30

5.5 Conditional Instructions.. 31
5.6 Unconditional Branching.. 32
5.7 Branching to Subroutines.. 33
5.8 Conditional Branching.. 34
5.9 Loops.. 38
5.10 Program Structure... 40
5.11 Execution.. 41
5.12 Breaking Execution... 42
5.13 Saving the Program... 43

• Saving in Printer.. 43
• Naming the Program.. 43
• Protecting the Program... 44
• Saving Without Line Numbers... 44
• Making Changes.. 45
• Making a Copy.. 45
• Renaming a Program... 45
• Saving in Non DOS-formatted Memory Cards........................... 45
• Creating a Startup Program.. 46

5.14 Rebooting the Printer.. 47

6. File System 6.1 Printer's Memory... 48
• Permanent memory ("rom:" and "c:")... 48
• Temporary Memory ("tmp:")... 49
• DOS-formatted Memory Cards ("card1:").................................. 49
• Non DOS-formatted Memory Cards ("rom:")............................ 50
• Other Memory Devices ("storage.")... 50
• Current Directory... 50
• Checking Free Memory... 50
• Providing More Free Memory.. 50
• Formatting the Permanent Memory.. 51
• Formatting SRAM Memory Cards... 51

6.2 Files .. 51
• File Types.. 51
• File Names... 51
• Listing Files... 51

6.3 Program Files.. 52
• Program File Types.. 52
• Instructions.. 52

6.4 Data Files.. 53
• Data File Types.. 53
• Instructions.. 53

6.5 Image Files.. 53
6.6 Outline Font Files.. 54
6.7 Transferring Text Files.. 54
6.8 Transferring Binary Files using Kermit... 54
6.9 Transferring Files Between Printers... 55
6.10 Arrays... 56

cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 3

Chapter 1 Introduction

7. Input to UBI Fingerprint 7.1 Standard I/O Channel.. 59
7.2 Input From Host (Std IN Channel only)... 59
7.3 Input From Host (Any Channel).. 59
7.4 Input From a Sequential File... 60
7.5 Input From a Random File.. 63
7.6 Input From Printer's Keyboard.. 64
7.7 Communication Control.. 66
7.8 Background Communication... 68
7.9 RS 422 Communication.. 72
7.10 External Equipment... 73

• Industrial Interface... 73

8. Output from UBI Fingerrprint 8.1 Output to Std Out Channel.. 74
8.2 Redirecting Output from Std Out Channel to File.......................... 76
8.3 Output and Append to Sequential Files.. 77
8.4 Output to Random Files.. 79
8.5 Output to Communication Channels.. 82
8.6 Output to Display.. 82

9. Data Handling 9.1 Preprocessing Input Data... 83
9.2 Input Data Conversion.. 86
9.3 Date and Time... 89
9.4 Random Number Generation... 91

10. Label Design 10.1 Creating a Layout.. 92
• Field Types.. 92
• Origin .. 93
• Coordinates.. 93
• Units of Measure.. 93
• Insertion Point.. 93
• Alignment.. 94
• Directions.. 95
• Layout Files... 96
• Checking Current Position... 96

10.2 Text Field.. 97
10.3 Bar Code Field.. 99
10.4 Image Field... 101
10.5 Box Field.. 102
10.6 Line Field.. 103
10.7 Layout Files.. 104

• Introduction... 104
• Creating a Layout File.. 104
• Creating a Logotype Name File... 107
• Creating a Data File or Array... 108
• Creating an Error File and Array.. 109
• Using the Files in a LAYOUT statement.................................. 110

11. Printing Control 1.1 Paper Feed.. 111
11.2 Printing... 113
11.3 Length of Last Feed Operation.. 115
11.4 Batch Printing... 115

cont'd.

1.1 Contents, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 4

Chapter 1 Introduction

12. Fonts 12.1 Font Types.. 117
12.2 Single-byte Fonts.. 117
12.3 Double-byte Fonts... 117
12.4 Font Direction, Size and Slant... 117
12.5 Standard Fonts.. 118
12.6 Old Font Names.. 118
12.7 Adding Fonts.. 118
12.8 Listing Fonts... 119
12.9 Removing Fonts.. 119
12.10 Font Aliases.. 119

13. Bar Codes 13.1 Standard Bar Codes... 120
13.2 Setup Bar Codes.. 120

14. Images 14.1 Images vs Image Files... 121
14.2 Standard Images.. 121
14.3 Downloading Image Files... 121
14.4 Listing Images... 122
14.5 Removing Images... 122

15. Printer Function Control 15.1 Keyboard.. 123
• Controlling the Printer in the Setup and Immediate Modes....... 123
• Enabling the Keys.. 123
• Key Id. Numbers.. 124
• Key-initiated Branching... 125
• Audible Key Response... 125
• Input from Printer's Keyboard.. 125
• Remapping the Keyboard... 126

15.2 Display.. 129
• Output to Display... 129
• Cursor Control... 130

15.3 LED Control Lamps.. 132
15.4 Buzzer... 133
15.5 Clock/Calendar... 133
15.6 Printer Setup... 134

• Reading Current Setup... 134
• Creating a Setup File.. 134
• Changing the Setup using a Setup File..................................... 135
• Changing the Setup using a Setup String.................................. 135

15.7 System Variables... 136
15.8 Printhead... 138
15.9 Transfer Ribbon.. 139
15.10 Memory Test... 140
15.11 Version Check... 141

16. Error Handling 16.1 Standard Error-Handling... 142
• Error Messages.. 142

16.2 Tracing Programming Errors... 143
16.3 Creating an Error-Handling Routine.. 143
16.4 Error-handling program... 145

• ERRHAND.PRG Utility Program.. 145
• Listing of ERRHAND.PRG Utility Program............................ 147
• Extensions to ERRHAND.PRG Utility Program...................... 150

17. Reference Lists 17.1 UBI Fingerprint instructions in alphabetical order....................... 151
17.2 UBI Fingerprint instructions sorted by application of use............ 156

1.1 Contents, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 5

Chapter 1 Introduction

Information in this manual is subject to change without prior notice and does not represent a commitment
on the part of Intermec Printer AB.

© Copyright Intermec PTC AB, 1998. All rights reserved. Published in Sweden.

EasyCoder, Fingerprint, LabelShop and UBI are trademarks of Intermec Technologies Corp.
Apple is a registered trademark of Apple Computer, Inc.
Bitstream is a registered trademark of Bitstream, Inc.
Centronics is a registered trademark of Centronics Data Computer Corp.
Crosstalk and DCA are registered trademarks of Digital Communications Associates, Inc.
IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.
Macintosh and TrueType are registered trademarks of Apple Computer, Inc.
Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation.
OS-2 is a registered trademark of International Business Machines Corporation.
TrueDoc is a trademark of Bitstream, Inc.
Unix is a registered trademark of Novell-USG.
Windows is a trademark of Microsoft Corporation.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 6

Chapter 1 Introduction

UBI Fingerprint 7.11 is a new version of a well-known Basic-
inspired, printer-resident programming language that has been
developed for use with computer-controlled direct thermal and
thermal transfer printers manufactured by United Barcode Indus-
tries (UBI). UBI Fingerprint 7.xx works only with the new genera-
tion of RISC-processor based printers, starting with EasyCoder 501
XP and EasyCoder 601 XP.

The UBI Fingerprint software is an easy-to-use intelligent pro-
gramming tool for label formatting and printer customizing, which
allows you to design your own label formats and write your own
printer application software.

You may easily create a printer program by yourself that exactly
fulfils your own unique requirements. Improvements or changes
due to new demands can be implemented quickly and without vast
expenses.

The new UBI Direct Protocol 7.11 is used for combining variable
input data from a host with predefined label layouts.

This tutorial manual describes how to start up UBI Fingerprint
programming and how to use the various instructions in their proper
context. Programming instructions are explained only briefly. The
UBI Direct Protocol 7.11 is described in a separate Programmer's
Guide.

The UBI Fingerprint ≥ 7.11 Reference Manual contains detailed
information on all programming instructions in the UBI Fingerprint
programming language in alphabetical order. It also contains other
types of program-related information that are common for all
printer models from UBI that uses the corresponding version of
UBI Fingerprint.

All information needed by the operator, like how to run the printer,
how to load the paper supply and how to maintain the printer, can
be found in the User's Guide and Installation & Operation manual
for the printer model in question.

The Installation & Operation manual for each printer model also
provides information on installation, setup, density, paper specifi-
cations, positioning, and other technical data, which are specific for
the printer model in question.

UBI Fingerprint 7.11 also supports:
• UBI Shell 4.1

Startup program for EasyCoder 501 XP/601 XP printers
• UBI LabelShop

Various versions
• UBI Windows Driver

For using an EasyCoder printer with most programs run under
MS Windows 3.11 and Windows 95.

1.2 Preface

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 7

Chapter 1 Introduction

1.3 News in UBI Fingerprint 7.11

UBI Fingerprint 7.11 is the first publicly documented version of the new generation of UBI Fingerprint
developed for use in the EasyCoder XP series.

General changes:
• New CPU board architecture with FLASH memory.
• New printout handling with two large image buffers and no banding.
• Communication port "uart3:" and "rs485:" no longer supported.
• New font handling with scalable fonts and font aliases (see FONT stmt).
• Double-byte fonts support (see FONTD and NASCD stmts).
• Some new devices added, others deleted (see Devices stmt).
• 11 new character sets added (see NASC stmt).
• Previous optional bar codes now standard.
• Printer setup via bar code wand introduced.

Compatibility:
• Font names for bitmap fonts translate to corresponding scalable font.
• Device "ram:" translates to "c:".
• Deleted commands will be ignored – no error conditions occur.

Deleted Instructions:
PRINTFEED NOT Has no meaning in UBI Fingerprint 7.11.
REMOVE FONT Has no meaning in UBI Fingerprint 7.11 (bitmap fonts no longer used).
RIBBON SAVE ON/OFF No ribbon save device exists for UBI Fingerprint 7.11 compatible printers.
STORE Obsolete. Replaced by STORE INPUT.

Modified instructions:
BARFONT Supports Unicoded TrueDoc and TrueType fonts with scaling and slanting.
CHDIR Supports new memory devices
DEVICES Removed: "uart3:", "cutter:", "ram:", "prel:", "rs485:", "msg:", "par:",

"bscrypt:", "null:" and "ind:". New: "c:", "lock:", "storage:", "tmp:", "wand:".
FILES Possible to include/exclude system files.
FONT Supports Unicoded TrueDoc and TrueType fonts with scaling and slanting.
FORMAT Possible to include/exclude system files.
FRE Now returns the number of free bytes in the temporary memory.
FUNCTEST Parameter RAM deleted, parameter KERNEL added.
FUNCTEST$ Parameter RAM deleted, parameter KERNEL added.
IMAGELOAD Supports downloading of both images and fonts.
NASC 11 new single-byte character sets can be selected.
OPTIMIZE ON/OFF Optimizing strategies “PRINT” and “STRING” no longer supported.
PORTIN Now supports 8 in ports and 12 out ports.
PORTOUT ON/OFF Now supports 12 out ports.
SETUP Some setup parameters changed, deleted or added.
SYSVAR Some system variables deleted or added.
TESTFEED TESTFEED is now the only method for adjusting the label stop sensor.
VERSION$ Now returns somewhat different information.

New Instructions:
FONTD Selects double-byte fonts.
NASCD Selects double-byte character sets.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 8

Chapter 2 Getting Started

2. Getting Started
2.1 Computer

Connection
The UBI Fingerprint firmware is stored in a Flash SIMM on the
printer's CPU board. No floppy disks or operative system, like e.g.
MS-DOS, is required. The printer only needs to be connected to a
mains supply.

Unless the printer is fitted with a program that allows it to be used
independently (“stand-alone”), you must also connect it to some
kind of device, which can transmit characters in ASCII format. It
can be anything from a non-intelligent terminal to a mainframe
computer system.

For programming the printer, you need a computer with a screen
and an alphanumeric keyboard, that provides two-way serial com-
munication, preferably using RS 232C, (e.g. an IBM PC or similar
computer with Microsoft Windows 3.111). Use e.g. Windows
Notepad or Write for writing programs and Windows Terminal for
communication with the printer.

Connect the printer and host as described in the Installation &
Operation manual for the printer model in question. If the printer has
several communication ports, it is recommended to use the serial
port "uart1:" for programming, which by default is set up for RS
232C. Other optional serial communication ports could also be
used.

It is possible to set up the printer's communication protocol to fit the
host computer. However, until you have become familiar with the
UBI Fingerprint concept, it may be easier to adapt the host to the
printer's default setup parameters:

 Default communication setup on "uart1:"
• Baud rate: 9600
• Character length: 8
• Parity: None
• No. of stop bits: 1
• Flow control: XON/XOFF to and from host
• New line: CR/LF (Carriage Return + Line Feed)

Check that the printer has an ample supply of paper or other
receiving material and, when applicable, of thermal transfer ribbon.
Refer to the Operator's Guide or the User's Manual for loading
instructions.

☞ Paper and Ribbon Load
Also see:
• User's Guide
• Installation & Operation manual

2.2 Check Paper
Supply

☞ Communication Setup
Also see:
• Chapter 15.6
• Installation & Operation manual

1/. Although most examples in this manual
assumes a host running MS Windows
3.11, other operative systems can also be
used, e.g. Windows 95, Windows NT,
DOS, Macintosh OS, OS-2 etc, as long
you have a terminal program that can
communicate with the printer and some
kind of word processing program.

Chapter 2

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 9

Chapter 2 Getting Started

2.3 Turn On the
Printer

☞ UBI Shell Startup Program
Also see:
• Installation & Operation manual

Check that the printhead is lowered. Turn on the main switch, which
is fitted on the printer's rear plate and check that the “Power” control
lamp comes on. Then watch the display window. What happens
next depends on what kind of startup file there is in the printer.

WARNING!
Make sure that any paper cutter is locked in closed position.

The cutter may be activated when the power is turned on!

After a short while, when the printer has performed certain self-
diagnostic tests and loaded the startup program, a countdown menu
will usually be displayed:

ENTER=UBI SHELL
5 sec. v.4.x

The countdown menus indicate that the printer is fitted with one of
the UBI Shell startup programs. Wait until the 5 seconds countdown
is completed. Then, by default, this menu will be displayed:

UBI Fingerprint
7.xx

This or similar messages indicates that the printer has entered the
immediate mode of UBI Fingerprint, where you can start your
programming. Please proceed at chapter 2.8.

If the UBI Shell countdown menus are shown, but are followed by
any other message than “UBI Fingerprint 7.xx”, some other appli-
cation has already been selected in UBI Shell. Refer to the Instal-
lation & Operation manual for information on how to select the UBI
Fingerprint option.

If the printer is not fitted with any startup program at all, the display
window should show the following message directly after power-
up:

UBI Fingerprint
7.xx

This means that the printer has entered the immediate mode of UBI
Fingerprint. Proceed at chapter 2.8.

If any other kind of message is displayed than those illustrated
above, the printer is provided with some kind of custom-made
startup program, which you must break before you can start
programming.

• Go on to chapter 2.7.

2.4 UBI Shell Startup
Program

2.5 No Startup
Program

2.6 Custom-Made
Startup Program

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 10

Chapter 2 Getting Started

2.7 Breaking a
Startup Program

☞ Breaking a Program
Also see:
• Chapter 5.12

Default Method (break from keyboard)
• Press the <C> key and keep it pressed down while also pressing

the <Pause> key.

Other Methods
• The program may be provided with other means for breaking the

program, e.g. by sending a certain character from the host or by
pressing another key or combination of keys. Break from
keyboard may also be disabled completely.

When a break interrupt has been executed and you have entered the
immediate mode, there will be no change in the printer's display, but
a message should appear on the screen of the host, provided you
have a working two-way communication:

User break in line XXXX

How to go on
• If you have succeeded in breaking the program, proceed at

chapter 2.8.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 11

Chapter 2 Getting Started

2.8 Communications
Test

☞ Character Sets
Also see:
• Chapter 9.1
• UBI Fingerprint Reference Manual

Check that you have entered the immediate mode and have a
working two-way serial communication by sending a simple
instruction from the host to the printer. On the keyboard of the host,
type:

? VERSION$ ↵ (↵ = Carriage Return key)

The printer should respond immediately by returning the version of
the installed UBI Fingerprint software to the screen of the host, e.g.:

UBI Fingerprint 6.11
Ok

This indicates that the communication is working both ways.

If the communication does not work, turn off the printer and check
the connection cable. Also check if the communication setup in the
host corresponds to the printer's setup and if the connection is made
between the correct ports. Check the verbosity level. Then try the
communication test again.

Another possible cause of error may be that another communication
channel than "uart1:" has been selected for UBI Fingerprint in UBI
Shell. Reselect the UBI Fingerprint application for "uart1:" as
described in the Installation & Operation manual.

Once you know that the communication is working, you may go on
and make the printer auto-adjust its paper feed according to the type
of labels loaded. Simultaneously press the <Shift> and <Feed>
keys on the printer's built-in keyboard. The printer will feed out at
least two blank labels (or corresponding).

Finally send a line of text to make sure that characters transmitted
from the terminal are interpreted as expected by the printer's
software:

FONT "Swiss 721 BT" ↵
PRTXT "ABCDEFGHIJKLM" ↵
PRINTFEED ↵

Each line will be acknowledged by an “Ok” on the screen, provided
that it has been entered correctly, that there is a working two-way
serial communication, and that the verbosity is on. When you press
the “Carriage Return” key the third time, the printer will feed out a
label, ticket, tag or piece of strip with the text printed near the lower
left corner of the printable area.

Try using other characters between the quotation marks in the third
line, especially typical national characters like ÅÄÖÜ¿¢¥ç etc.
Should any unexpected characters be printed, you may need to
select another character set, see NASC statement in chapter 9.1, or
switch from 7-bit to 8-bit communication.

☞ Version Check
Also see:
• Chapter 15.11

☞ Verbosity
Also see:
• Chapter 7.7
• Chapter 15.7

☞ Communication Setup
Also see:
• Chapter 15.6
• Installation & Operation manual

☞ UBI Shell
Also see:
• Installation & Operation manual

☞ Text Field Printing
Also see:
• Chapter 10.2

ABCDEFGHIJKLM

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 12

Chapter 3 Creating a Simple Label

3. Creating a Simple Label
3.1 Introduction To get a quick impression of how UBI Fingerprint works, start by

creating a simple label following the step-by-step instructions
below. Later in this manual, the various functions will be explained
in greater detail. You can also look up the instructions in the UBI
Fingerprint Reference Manual.

Use a word processing program, e.g. Windows Notepad, to enter
the program lines. Use a space character to separate the line number
from the instruction that follows. Finish each line with a carriage
return character, indicated by ø below.

When you have entered a batch of program lines, copy the lines and
paste them into a communication program, e.g. Windows Termi-
nal, which is connected to the printer (see chapter 2.11).

The printer will not execute the program until you have entered RUN
+ Carriage Return.

Let us start by printing a box 430 dots high and 340 dots wide with
a line thickness of 15 dots. The box is inserted at position X=10,
Y=10:

NEW
10 PRPOS 10, 10 ↵
20 PRBOX 430,340,15 ↵
200 PRINTFEED ↵
300 END ↵
RUN ↵

Note: The printer will not execute the program until you have typed
RUN ↵.

3.2 Printing a Box

Chapter 3

☞ Carriage Return Character
Also see:
• Chapter 4.1

☞ Box Field Printing
Also see:
• Chapter 10.5

Note:
This example is designed to be run on any present UBI Fingerprint 7.xx-
compatible EasyCoder printer connected to a terminal or computer and
loaded with a paper web (preferably labels) according to the following
specifications.

Label size:
Width: ≥ 52.8 mm (2.08")
Length: ≥ 70 mm (2.75")

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 13

Chapter 3 Creating a Simple Label

Now we add the image "UBI.1" after changing the position
coordinates to X=30,Y=30.

30 PRPOS 30,30 ↵
40 PRIMAGE "UBI.1" ↵
RUN ↵

Before you print a bar code, you need to choose a bar code type.
Note there is no blank space in the bartype name.

50 PRPOS 75,270 ↵
60 BARTYPE "CODE39" ↵
70 PRBAR "UBI" ↵
RUN ↵

To get human readable text printed under the bar code, add these
lines:

1 BARFONT ON ↵
2 BARFONT "Swiss 721 BT", 6 ↵
RUN ↵

3.3 Printing an
Image

3.4 Printing a Bar
Code

UBI

3.5 Printing Human
Readables

☞ Image Field Printing
Also see:
• Chapter 10.4

☞ Bar Code Field Printing
Also see:
• Chapter 10.3

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 14

Chapter 3 Creating a Simple Label

3.6 Printing Text

UBI

My FIRST label!

UBI

My FIRST label!

3.7 Listing the
Program

Add a line of text at position X=25,Y=220:

80 PRPOS 25,220 ↵
90 FONT "Swiss 721 BT", 6 ↵
100 PRTXT "My FIRST Label!" ↵
RUN ↵

To view the whole program, type:

LIST ↵

The lines will be listed in ascending order on your terminal's screen:

1 BARFONT ON
2 BARFONT "Swiss 721 BT", 6
10 PRPOS 10,10
20 PRBOX 430,340,15
30 PRPOS 30,30
40 PRIMAGE "UBI.1"
50 PRPOS 75,270
60 BARTYPE "CODE39"
70 PRBAR "UBI"
80 PRPOS 25,220
90 FONT "Swiss 721 BT", 6
100 PRTXT "My FIRST label!"
200 PRINTFEED
300 END
ok

If you want to change a program line, simply rewrite the line using
the same line number. For example, move the text to the right by
rewriting line number 80 with new coordinates:

80 PRPOS 75,220 ↵
RUN ↵

3.8 Changing a
Program Line

☞ Text Field Printing
Also see:
• Chapter 10.2

☞ Program Editing and Listing
Also see:
• Chapter 5.4

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 15

Chapter 3 Creating a Simple Label

3.9 Saving the
Program

If you want to save your first attempt, issue the following instruc-
tion:

SAVE "LABEL1" ↵

Your program will be saved in the printer's memory under the name:

LABEL1.PRG

The program above is very simple and there is a very small risk of
encountering any errors. When writing more complex programs,
you might find use for an errorhandler. For that purpose we have
included a program called ERRHAND.PRG in the firmware.
Should your printer not contain any errorhandling program, you
will find ERRHAND.PRG listed in chapter 16.4.

ERRHAND.PRG contains subroutines that e.g. displays the type of
error on the printer's LCD display (e.g. "OUT OF PAPER" or
"HEAD LIFTED"), prints the error number on your screen, and
assigns subroutines to some of the keys on the keyboard (if any).
There is also a subroutine that performs a PRINTFEED with error-
checking. The ERRHAND.PRG occupies lines 10, 20 and 100000–
1900000.

If ERRHAND.PRG is merged with the program you just wrote,
lines 10 and 20 in your program will be replaced with lines 10 and
20 from ERRHAND.PRG. Therefore you have to renumber your
program, so that your program begins with an unoccupied number,
e.g. 50, before ERRHAND.PRG is merged:

RENUM 50,1,10 ↵
Ok

LIST ↵
50 BARFONT ON
60 BARFONT "SW030RSN"
70 PRPOS 10,10
80 PRBOX 400,300,10
90 PRPOS 25,25
100 PRIMAGE "UBI.1"
110 PRPOS 75,250
120 BARTYPE "CODE39"
130 PRBAR "UBI"
140 PRPOS 25,200
150 FONT "SW030RSN"
160 PRTXT "My FIRST label!"
170 PRINTFEED
180 END
ok

3.11 Renumbering
Lines

3.10 Error Handling

☞ Saving
Also see:
• Chapter 5.13

☞ ERRHAND.PRG
Also see:
• Chapter 16.4

☞ Renumbering Program Lines
Also see:
• Chapter 5.4

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 16

Chapter 3 Creating a Simple Label

3.12 Merging
Programs

Now your label-printing program LABEL1.PRG will not interfere
with ERRHAND.PRG and you can merge the two programs into
a single program. In fact, you will create a copy of ERRHAND.PRG
which is merged into LABEL1.PRG. Thus the original
ERRHAND.PRG can be merged into more programs later:

MERGE "rom:ERRHAND.PRG" ↵

Instead of using a PRINTFEED statement, we will use a subroutine
in ERRHAND.PRG. Because ERRHAND.PRG assigns functions
to e.g. the <Print > key, you can create a loop in the program so you
will get a label every time you press the <Print > key.

160 GOSUB 500000 ↵
170 GOTO 170 ↵
RUN ↵

Try pressing different buttons on the printer's keyboard. Only those,
to which functions been assigned in ERRHAND.PRG (i.e. the
<Pause>, <Print >, <Setup> and <Feed> keys) will work.

You can break the program by simultaneously pressing the <Shift>
and <Pause> keys.

Save the program again using the same name as before:

SAVE "LABEL1" ↵

The previously saved program "LABEL1.PRG" will be replaced
by the new version.

With this example, we hope you have got a general impression of
the basic methods for UBI Fingerprint programming and that you
also see the advantages of using ERRHAND.PRG or a similar
program for errorhandling and initiation.

ERRHAND.PRG can easily be modified to fit into more complex
programs and we recommend that you use it when writing your
programs until you feel ready to create errorhandling programs
yourself (see chapter 16 “Error-Handling”).

3.13 Using the Print
Key

☞ Merging programs
Also see:
• Chapter 6.3

☞ Branching and Loops
Also see:
• Chapter 5.6 (GOTO)
• Chapter 5.7 (GOSUB)

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 17

Chapter 4 Terminology and Syntax

4.1 Lines

4. Terminology and Syntax
You will always use one or several lines to give the instructions to
the printer, regardless whether you work in the immediate mode, in
the programming mode, or in the UBI Direct Protocol. The differ-
ence is that in the programming mode, the lines are always
numbered (visibly or invisibly), whereas in the immediate mode
and the UBI Direct Protocol, they must not be numbered.

A line may contain up to 300 characters. A line must always be
terminated by a Carriage Return character (ASCII 13 decimal), see
note. When the line reaches the right edge of the screen of the host,
it will usually wrap to the next screen line.

Theoretically, line numbers up to > 2 billion can be used. If you
choose to enter the line numbers manually, start by numbering the
lines from 10 and upwards with an increment of 10, i.e. 10, 20, 30,
40 etc. That makes it possible to insert additional lines (e.g.
11,12,13...etc.), when the need arises. However, the line numbers
are your own decision, since you must type them yourself.

You can also omit line numbers at edition and let the software
number the lines automatically. Such line numbers will not be
visible before the program is listed.

After having typed the line number, use a blank space to separate
it from the statement or function that follows. That makes it easier
to read the program without having to list it.

Several instruction may be issued on the same line, provided they
are separated by colons (:), e.g.:

100 FONT "Swiss 721 BT":PRTXT "HELLO"

This is especially useful in the immediate mode (see chapter 5.3)
and in the UBI Direct Protocol, where you can send a complete set
of instructions as a single line, e.g.:

PP100,250:FT"Swiss 721 BT":PT"Text 1":PF ↵

It is not possible to alter a line after it has been transmitted to the
printer. If you want to change such a line, you must send the whole
line again using the same line number, or delete it using a DELETE
statement (see chapter 5.4).

A statement is an instruction, which specifies an operation. It con-
sists of a keyword (e.g. PRTXT), usually followed by one or several
parameters, flags, or input data, which further define the statement.

The keyword can be entered as uppercase or lowercase letters but
will always appear as uppercase letters, when the program is listed
on the screen of the host. Some keywords can be used in an
abbreviated form, e.g. PRTXT may also be entered as PT.

Note:
If you enter a carriage return on your
terminal, the printer will, by default,
echo back a Carriage Return + a Line
Feed (ASCII 13 + 10 decimal). Using
the setup option “New Line", you may
restrict the printer only to echo back
either a Carriage Return (ASCII 13 dec.)
or a Line Feed (ASCII 10 dec.).

☞ Programming Mode
Also see:
• Chapter 5.4

☞ Immediate Mode
Also see:
• Chapter 5.3

☞ UBI Direct Protocol
Also see:
• UBI Direct Protocol 7.xx,
 Programmer's Guide

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 18

Chapter 4 Terminology and Syntax

4.2 Statements

4.3 Functions

4.4 Other Instruc-
tions

You may use a blank space to separate the keyword from the rest of
the statement, which must be entered exactly according to the
specified syntax. Note that in some cases, a space character is a
compulsory part of the keyword, e.g. LINE_INPUT. When such is
the case, it is indicated by the syntax description in the UBI
Fingerprint Reference Manual.

A function is a procedure, which returns a value. A function consists
of a keyword combined with values, flags, and/or operators. The
keyword can be entered as uppercase or lowercase letters, but it will
always appear as uppercase letters, when the program is listed on the
screen. Values, flags, and operators must be enclosed by parenthe-
ses (). The operators will be explained later on.

Examples:
CHR$(65) Keyword with parameter.
TIME$("F") Keyword with flag.
ABS (20*5) Keyword with arithmetic operator

(*) and values.
IF(PRSTAT AND 1)... Keywords, logical operator (AND)

and value.

A function can be entered inside a statement or on a line containing
other instructions. They are often used in connection with condi-
tional statements, e.g.:

320 IF (PRSTAT AND 1) THEN GOTO 1000

Blank spaces may be inserted to separate the function from other
instructions and also to separate the keyword from the rest of the
statement.

In addition to statements and functions, there are a few other types
of specialized instructions such as the DATE$ and TIME$ variables,
the SYSVAR system array and the RUN pcx2bmp command, which
do not fit into the above-mentioned categories.

In the descriptions of the syntax for the various instructions, the
word “Expression” is used to cover both constants and variables.

Expressions are of two kinds:
• String expressions are carriers of alphanumeric text, i.e. string

constants and string variables.
• Numeric expressions contain numeric values, numeric vari-

ables and operators only, i.e. numeric constants and numeric
variables.

☞ Keywords
Also see:
• Chapter 4.8

☞ Operators
Also see:
• Chapter 4.9

☞ Conditional Instructions
Also see:
• Chapter 5.5

4.5 Expressions

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 19

Chapter 4 Terminology and Syntax

Constants are fixed text or values. There are two kinds:
• String constants are sequences of characters, i.e. text. If digits

or operators are included, they will be considered as text and will
not be processed. String constants must always be started and
terminated by double quotation marks ("..."), e.g. " TEST.PRG" .

• Numeric constants are fixed numeric values. Only decimal
integers are allowed, i.e. 1, 2, 3, 4, 5 etc. Decimal points (e.g.
1.56890765) are not supported. Values may be positive or
negative. Positive number may optionally be indicated by a
leading plus sign (+), whereas negative numbers always must be
indicated by a leading minus sign (-).

Note that certain characters, e.g. digits, can be either string constants
(text) or numeric constants (numbers). To allow the software to
detect that difference, string constants must always be enclosed by
double quotation marks (""), as opposed to numeric constants.

Variables are value holders. There are two main types:
• String variables are used to store strings entered as string

constants or produced by UBI Fingerprint instructions. Max.
size is 64 kbytes. String variables are indicated by a trailing $
sign.

Examples:
A$ = "UBI PRINTER"
B$ = TIME$
LET C$ = DATE$

• Numeric variables are used to store numbers, entered as
numeric constants, or produced by UBI Fingerprint instructions
or operations. Numeric variables are indicated by a trailing %
sign.

Examples:
A% = 150
B% = DATEDIFF ("981001","981130")
LET C% = 2^2

The name of a variable may consist of letters, numbers and decimal
points. The first character must always be a letter. No keywords or
keyword abbreviations must be used. However, completely em-
bedded keywords are allowed.

Examples:
LOC is a keyword
CLOCK$ = "ABC" is OK
LOC$ = "ABC" causes an error
LOCK$ = "ABC" causes an error

The presently used keywords and keywords reserved for future
program enhancement are listed on next page.

4.6 Constants

4.7 Variables

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 20

Chapter 4 Terminology and Syntax

#
'
(
)
*
+
,
-
/
:
;
<
<=
<>
=
=<
=>
>
><
>=
?
ABS
ACTLEN
ALIGN
AN
AND
AS
ASC
BARADJUST
BARFONT
BARHEIGHT
BARMAG
BARRATIO
BARSET
BARTYPE
BEEP
BF
BH
BM
BR
BREAK

BT
BUSY
CHDIR
CHECKSUM
CHR$
CLEANFEED
CLEAR
CLL
CLOSE
COM ERROR
COMBUF$
COMSET
COMSTAT
CONT
COPY
COUNT&
CSRLIN
CSUM
CUT
DATA
DATE$
DATEADD$
DATEDIFF
DELETE
DEVICES
DIM
DIR
ELSE
END
EOF
EQV
ERL
ERR
FF
FIELD
FIELDNO
FILE&
FILES
FIX
FONT
FONTD

LIST
LOAD
LOC
LOCATE
LOF
LSET
LTS&
MAG
MAP
MERGE
MID$
MOD
NAME
NASC
NASCD
NEW
NEXT
NI
NORIMAGE
NOT
OFF
OFF LINE
ON
ON BREAK
ON COMSET
ON ERROR GOTO
ON KEY
ON LINE
OPEN
OPT
OPTIMIZE
OR
PB
PEC2DATA
PEC2LAY
PECTAB
PF
PL
PLAY
PM
PORTIN

PORTOUT
PP
PRBAR
PRBOX
PRIMAGE
PRINT
PRINT USING
PRINTFEED
PRINTONE
PRLINE
PRPOS
PRSTAT
PRTXT
PT
PUT
PX
RANDOM
RANDOMIZE
READ
READY
REBOOT
REDIRECT OUT
REM
REMOVE
RENUM
RESET
RESTORE
RESUME
RESUME NEXT
RETURN
RIBBON
RIGHT$
RND
RSET
RUN
SAVE
SET FAULTY DOT
SETSTDIO
SETUP
SGN
SORT

FONTNAME$
FONTS
FOR
FOR APPEND AS
FOR INPUT AS
FOR OUTPUT AS
FORMAT
FORMFEED
FRE
FT
FUNCTEST
GET
GOSUB
GOTO
HEAD
HEX$
HOLIDAY$
IF
II
IMAGE
IMAGENAME$
IMAGES
IMMEDIATE
IMP
INKEY$
INPUT
INPUT$
INSTR
INT
INVIMAGE
IP
KEY
KEYBMAP$
KILL
LAYOUT
LBLCOND
LED
LEFT$
LEN
LET
LINE INPUT

SOUND
SPACE$
SPC
SPLIT
STEP
STOP
STORE
STR$
STRING$
SWAP
SYSTEM
SYSVAR
TAB
TESTFEED
THEN
TICKS
TIME$
TIMEADD$
TIMEDIFF
TO
TRANSFER
TRANSFER$
TRANSFERSET
TROFF
TRON
VAL
VERBOFF
VERBON
VERSION$
WEEKDAY
WEEKNUMBER
WEND
WHILE
WRITE
XOR
XYZZY
\
^

4.8 Keyword List

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 21

Chapter 4 Terminology and Syntax

4.9 Operators There are three main types of operators – arithmetic, relational, and
logical:

Arithmetic Operators (integers only)
+ Addition (e.g. 2+2=4)
- Subtraction (e.g. 4-1=3)
* Multiplication (e.g. 2*3=6)
\ Integer division (e.g. 6\2=3)
MOD Modulo arithmetic (results in an integer value which is the

remainder of an integer division, e.g. 5MOD2=1)
^ Exponent (e.g. 5^2=25)

Parentheses can be used to specify the order of calculation, e.g.:
7+5^2\8 = 10
(7+5^2)\8 = 4

Relational Operators
< less than
< = less than or equal to
< > not equal to
= equal to (also used as an assignment operator)
> greater than
> = greater than or equal to

Relational operators return:
-1 if relation is TRUE
0 if relation is FALSE

The following rules apply:
• Arithmetic operations are evaluated before relational opera-

tions.
• Letters are greater than digits.
• Lowercase letter are greater than their uppercase counterparts.
• The ASCII code “values” of letters increase alphabetically and

the leading and trailing blanks are significant.
• Strings are compared by their corresponding ASCII code value.

Logical Operators
AND conjunction
OR disjunction
XOR exclusive or
EQV equivalent

Logical operators combine simple logical expressions to form more
complicated logical expressions. The logical operators operate
bitwise on the arguments, e.g.:

1 AND 2 = 0

Logical operators can be used to connect relational operators, e.g.:

A%10 AND A%<100

Logical operators can also be used to mask bits, e.g.:

A%=A% AND 128

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 22

Chapter 4 Terminology and Syntax

4.9 Operators, cont'd. The principles are illustrated by the following tables, where A and
B are simple logical expressions.

Logical operator: AND
A B A AND B
1 1 1
1 0 0
0 1 0
0 0 0

Logical operator: XOR
A B A XOR B
1 1 0
1 0 1
0 1 1
0 0 0

Logical operator: OR
A B A OR B
1 1 1
1 0 1
0 1 1
0 0 0

Logical operator: EQV
A B A EQV B
1 1 1
1 0 0
0 1 0
0 0 1

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 23

Chapter 4 Terminology and Syntax

“Device” is a generic term for communication channels, various
parts of the printer's memory, and operator interfaces such as the
printer's display and keyboard.

Name No. Can be OPENed for... Remarks
Communication:
console: 0 Input/Output Printer's display and/or keyboard
uart1: 1 Input/Output Serial communication port
uart2: 2 Input/Output Serial communication port (option)
centronics: 4 Input Parallel communication

Memory:
rom: N/A Input (files only) Printer's firmware (Kernel) plus

read-only memory card
c: N/A Input/Output/Random (alternative name "ram:")
temp: N/A Input/Output/Append/ Printer's temporary memory

Random (files only)
card1: N/A Input/Output/Append/ SRAM memory card

Random (files only)

Special:
lock: N/A Input Electronic keys
storage: N/A Input/Output/Random Electronic keys
wand: N/A Input Data from Code 128 bar code via

printer's bar code wand interface

The devices can be listed by means of a DEVICES statement. All
devices will be listed regardless if they are installed or not.

Devices are referred to by name in connection with instructions
concerning directories (e.g. SAVE, KILL , FORMAT) and with OPEN
statements. Note that the names of all devices should end with a
colon (:) and the name should be enclosed by double quotation
marks, e.g. "tmp:". Use lowercase characters only in device names.

In instructions used in connection with communication (e.g. BREAK,
BUSY/ READY, COMSET), the keyboard/display unit and the com-
munication channels are specified by numbers instead of names:
0 = "console:"
1 = "uart1:"
2 = "uart2:"
4 = "centronics:"

☞ Files
Also see:
• Chapter 6 (File system)
• Chapter 7 (Input, Append, Random)
• Chapter 8 (Output, Random)

4.10 Devices

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 24

Chapter 5 UBI Fingerprint Programming

5.1 Introduction

5. UBI Fingerprint Programming
The UBI Fingerprint 7.xx firmware works in two main modes, the
“Immediate Mode” and the “Programming Mode”. A special case
is the UBI Direct Protocol 7.xx, which is described in a separate
Programmer's Guide and will not be explained any further in this
manual.

Immediate Mode implies that the instructions are executed at once
as soon as a carriage return is received. Most instructions can be
used, but the instructions cannot be saved after execution.

Programming Mode is used to enter instructions in the form of
program lines. The lines can be manually provided with visible line
numbers at editing, or be automatically provided with invisible line
numbers by the printer's software. No execution is performed until
a RUN statement is issued in the Immediate Mode, i.e. on a line
without number. The program can be saved in the printer's memory
and used again.

To be able to program a printer, you need a terminal or host
computer with a screen and a keyboard and a working two-way
serial communication between printer and host, preferably RS
232C on communication channel "uart1:". The host must be able to
transmit and receive ASCII characters, e.g. by means of a commu-
nication program like Windows Terminal.

There are three main methods of writing and transmitting a program
to the printer:

• Line-by-Line Method
If you have an “non-intelligent” terminal that just can transmit
and receive ASCII characters, you must write and send each line
separately.

Each line will be checked for possible syntax errors as soon as
the printer receives it and the printer will return either “Ok” or
an error message to the screen of the host, provided verbosity is
on.

If you need to correct a mistake, you must rewrite the complete
line using the same line number. Thus, this method is not suited
for the programming without line numbers.

Note that even if most examples of computer connection in this
manual assumes a PC running under MS Windows (3.11, Win
95 or NT4), UBI Fingerprint is by no means restricted to such
computers. Other personal computers and operating systems,
such as DOS, Apple Macintosh OS, OS-2, Unix etc., as well as
larger computer systems, can be used following the same
principles.

5.2 Editing Methods

☞ Computer Connection
Also see:
• Chapter 2.1

☞ Verbosity
Also see:
• Chapter 7.7
• Chapter 15.7

☞ Error Messages
Also see:
• Chapter 16.1

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 25

Chapter 5 UBI Fingerprint Programming

5.2 Editing Methods,
cont'd.

• Copy-and-Paste Method
If the host computer is fitted with both a communication
program (e.g. Windows Terminal) and a word-processing
program (e.g. Windows Write or Windows Notepad), you can
write the program, partly or completely, in the word processor
and then Copy and Paste it into the communication program.

Each line will be checked for possible syntax errors as soon as
the printer receives it and the printer will return an error message
after each line where an error has been detected, provided
verbosity is on.

If you need to correct a mistake, you can make the correction in
the word processor and then copy and paste the line into the
communication program. If you do not use line numbers, you
must Copy and Paste the complete corrected program back to the
communication program.

• Send Text Method
If the host computer is fitted with both a communication
program (e.g. Windows Terminal) and a word-processing pro-
gram (e.g. Windows Write or Windows Notepad), you can write
the program, partly or completely, in the word processor and
send the whole text file to the printer by means of the commu-
nication program (e.g. “Transfers; Send Text File” in Windows
Terminal).

Each line will be checked for possible syntax errors as soon as
the printer receives it and the printer will return an error message
after each line where an error has been detected, provided
verbosity is on.

If you need to correct a mistake, you can make the correction in
the word processing program and then send the complete
program again via the communication program.

The Immediate Mode can be used for four main purposes:
• Printing of labels that you will never need to print again.
• Printing of labels, which have been edited and saved in the host

computer and are downloaded as text strings to the printer.
• Editing of programs to be executed in the programming mode.
• Issuing of instructions outside the execution of programs in the

programming mode, e.g. DELETE, LOAD, MERGE, NEW, REBOOT
or RUN.

Rather than creating programs in the Programming Mode, in some
cases you may want to edit the label in your host computer and
transmit the printing instructions and data to the printer in the form
of text strings. This method resembles the so called “Escape
sequences” used in earlier generations of label printers.

☞ Verbosity
Also see:
• Chapter 7.7
• Chapter 15.7

☞ Error Messages
Also see:
• Chapter 16.1

5.3 Immediate Mode

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 26

Chapter 5 UBI Fingerprint Programming

To make the strings shorter, use the UBI Fingerprint abbreviations.
Several statements can be issued on the same line separated by
colons (:), on separate lines, or using a mix of both methods.

Examples:
All intructions can be issued in a single line....

PP160,250:DIR3:AN4:FT"Swiss 721 BT":PT"Hello":PF ↵
or with each instruction as a separate line...

PP160,250 ↵ (print start position)
DIR3 ↵ (print direction)
AN4 ↵ (alignment)
FT"Swiss 721 BT" ↵ (font select)
PT"Hello" ↵ (text input data)
PF ↵ (print one copy)

As soon as a carriage return is received, the software checks the
instructions for syntax errors. Provided there is a working two-way
communication and the verbosity is on, the printer will either return
an error message or “Ok” to the host.

This type of communication works well and is easy to learn, but it
does not take full advantage of the flexibility and computing
capacity offered by the UBI Fingerprint printers. For example, you
cannot save the labels in the printer but must download each new
label, and all error-handling must be taken care of by the host.

Rather than using the Immediate Mode, the UBI Direct Protocol is
usually to prefer, since it allows variable input data to be combined
with predefined layouts, handles counters and contains a flexible
error-handler.

Beside printing text, bar codes and graphics, you can perform other
tasks in the Immediate Mode as well, e.g. calculation. Try typing
this instruction on the keyboard of the host:

? ((5^2+5)\3)*5 ↵ (↵ = Carriage Return key)

The calculation will be performed immediately and the result will
be returned to the screen of the host:

50
Ok

Four keys or key combinations are enabled in the Immediate Mode,
obviously provided that the printer is fitted with the key(s) in
question:

• The <Print > key or button produces a FORMFEED operation.
• The <Feed> key produces a FORMFEED operation.
• The <Shift> + <Feed> keys produce a TESTFEED operation.
• The <Setup> key gives access to the Setup Mode.

5.3 Immediate Mode,
cont'd.

☞ Standard Error-Handling
Also see:
• Chapter 16.1

☞ UBI Direct Protocol
Also see:
• UBI Direct Protocol 7.xx,
 Programmer's Guide

Important:
To send an instruction from the terminal
to the printer, press the Carriage Return
key. In the programming examples later
on in this manual, this character will be
omitted, but you must not forget to enter
it via the keyboard of the host.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 27

Chapter 5 UBI Fingerprint Programming

5.3 Immediate Mode,
cont'd.

When the printhead is lowered and the <Print > or <Feed> keys are
pressed, three possible error conditions can cause an error message
in English to be displayed:
• “Error 1005 -Press any key!-” (Out of paper)
• “Error 1031 -Press any key!-” (Next label not found)
• “Error 1027 -Press any key!-” (Out of ribbon)

After the error has been attended to, the error message can be cleared
by pressing any of the above-mentioned keys.

When the printhead is lifted, the <Print > and <Feed> keys will run
the printers mechanism in order to facilitate cleaning of the print
roller, i.e. the rubber-coated roller that drives the paper forward
under the printhead. The motor will stop automatically when the
print roller has completed a few rotations.

The Programming Mode is used to execute instructions entered in
the form of program lines. The firmware assumes input to the
Programming Mode in two cases:
• When a line starts with a number.
• After an IMMEDIATEOFF statement has been executed.

(See “Programming without Line Numbers” later in this chap-
ter).

One or several lines make up a program, which can be executed as
many times as you wish. A program can also be saved, closed,
copied, loaded, listed, merged, and killed, see chapter 6.3. All lines
have line numbers, that are either manually entered when the
program is edited, or provided automatically and invisibly by the
firmware when an IMMEDIATEON statement has been executed.

Each time the printer receives a program line followed by a Carriage
Return character, the firmware checks the line for possible syntax
errors. If an error is encountered, an error message will be returned
to the host, provided there is a working two-way communication
and the verbosity is on.

The program is executed in ascending line number order when a
RUN statement is issued in the Immediate Mode, i.e. on a line
without any line number. However, various types of branching and
loops can be created in the program that makes the execution
deviate from a strict ascending order.

Note that the editing of the program takes place in the Immediate
Mode, while the execution is performed in the Programming Mode.
Often, programs are made as autoexec (startup) files that start up
automatically when the printer is turned on, and keeps on running
infinitely.

5.4 Programming
Mode

☞ Autoexec-files (startup files)
Also see:
• Chapter 5.13

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 28

Chapter 5 UBI Fingerprint Programming

5.4 Programming
Mode, cont'd.

Programming with Line Numbers
In this case you will start each line by manually entering a line
number. We recommend that you start with line number 10 and use
an increment of 10 between lines to allow additional lines to be
inserted later. To make the program easier to read, you can use a
space character between the line number and the instruction. If not,
the software will insert a space character automatically when the
program is listed. Let us use the calculation example from the
Immediate Mode. It would look like this in the Programming Mode:

10 ? ((5^2+5)\3)*5 ↵
RUN ↵

yields:
15
Ok

Let us have a look at the lines:
• The first line consists of a line number (10) followed by an

optional space character and the instruction ? ((5^2+5)\3)*5 .
(? is a shorthand form for the statement PRINT, which returns
the result of the calculation to the screen of the host). The line is
terminated by a Carriage Return character.

• Next line has no line number, and contains the statement RUN,
which orders the printer to execute all preceding numbered lines
in consecutive ascending order according to their line numbers.

• The result (15) will be displayed on the terminal's screen
followed by “Ok” to indicate that execution was successful.

In this manual, the programming examples will generally have line
numbers in order to make them easier to understand. For more
complex programs, programming without line numbers, as ex-
plained on next page, may be both easier and quicker.

Important:
To send an instruction from the terminal
to the printer, press the Carriage Return
key. In the programming examples later
on in this manual, this character will be
omitted, but you must not forget to enter
it via the keyboard of the host.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 29

Chapter 5 UBI Fingerprint Programming

Programming without Line Numbers
You can choose to omit entering line numbers manually when
writing a program. This is a special case of the Programming Mode,
but in order to make the printer understand what you want to do, you
must turn off the Immediate Mode by means of an IMMEDIATE
OFF statement. (Normally, the software interprets the lack of line
numbers as Immediate Mode).

Then you can write the program line by line without having to type
a line number at the start of each line. In other respects, you can
generally work just as in the normal programming mode.

However, a major difference is when you want to make the
execution branch to a certain line, e.g. by a GOTO statement. You
cannot use line numbers to specify the line in question. Instead,
there is a feature called “line labels”. The line you want to refer to
must start with a line label, i.e. a number of characters appended by
a colon (:). The line label must not start with a digit or interfere with
any keyword (see chapter 4.8).

When you want to refer to a line marked with a line label, just enter
the line label (without any colon), where you otherwise would have
put the line number.

Finish the program by issuing an IMMEDIATE ON statement before
you RUN it. The lines will automatically be numbered 10-20-30-40-
50 etc., but the line numbers will not be visible before you LIST the
program. Line labels will not be replaced by line numbers.

Two simple examples show the difference between using line
numbers and line labels:

Line Numbers Line Labels
IMMEDIATE OFF

10 GOSUB 1000 GOSUB Q123
20 END END
1000 SOUND 440,50 Q123:SOUND 440,50
1010 RETURN RETURN

IMMEDIATE ON
RUN RUN

LIST LIST
10 GOSUB 1000 10 GOSUB Q123
20 END 20 END
1000 SOUND 440,50 30 Q123: SOUND 440,50
1010 RETURN 40 RETURN

5.4 Programming
Mode, cont'd.

☞ Branching the Program Execution
Also see:
• Chapter 5.6 – 5.8

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 30

Chapter 5 UBI Fingerprint Programming

Programming Instructions
A number of instructions are used in connection with the editing of
programs in the Programming Mode:

NEW
Before you enter the first program line, always issue a NEW
statement in the Immediate Mode to CLEAR the printer's working
memory, CLOSE all files and CLEAR all variables.

IMMEDIATE OFF
To write the program without entering line numbers manually,
issue this statement in the Immediate Mode before the first line is
entered.

REM (')
To make the program easier to understand, enter remarks and
explanations on separate lines or in lines containing other instruc-
tions. Any characters preceded by REM, or its shorthand version '
(single quotation mark), will not be regarded as part of the program
and will not be executed. REM statements can also be used at the end
of lines, if they are preceded by a colon (:).

END
Usually, subroutines are entered on lines with higher numbers than
the main program. It is a good programming habit to finish the main
program with an END statement in order to separate it from the
subroutines. When an END statement is encountered, the execution
is terminated and all OPENed files and devices are CLOSEd.

IMMEDIATE ON
If an IMMEDIATEOFF statement has been issued before starting to
write the program, turn on the Immediate Mode again by means of
an IMMEDIATEON statement before starting the execution, i.e. a
RUN statement is issued.

LIST
You can LIST the entire program, i.e. make the printer return the
lines to the screen of the host. You can also choose to list part of the
program or variables only. If you have edited the program without
line numbers, the numbers automatically assigned to the lines at
execution will now appear. LIST is usually issued in the Immediate
Mode.

DELETE
Program lines can be removed using the DELETE statement in the
Immediate Mode. Both single lines and ranges of lines in consecu-
tive order can be deleted.

RENUM
The program lines can be renumbered, e.g. to provide space for new
program lines, to change the order of execution, or to make it
possible to MERGE to programs. Line references for GOSUB, GOTO
and RETURN statements will be renumbered accordingly.

5.4 Programming
Mode, cont'd.

Warning! If there already is a program
in the working memory, it will be deleted
and cannot be restored unless it has
been SAVEd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 31

Chapter 5 UBI Fingerprint Programming

5.5 Conditional
Instructions

Conditional instructions control the execution according to whether
a numeric expression is true or false. UBI Fingerprint has one
conditional instruction, which can be used in two different ways:
• IF...THEN...[ELSE]
• IF...THEN...[ELSE]...ENDIF

IF...THEN...[ELSE]
If a numeric expression is TRUE, then a certain statement should
be executed, but if the numeric expression is FALSE, optionally
another statement should be executed.

This example allows you to compare two values entered from the
keyboard of the host.
10 INPUT "Enter first value ", A%
20 INPUT "Enter second value ", B%
30 C$="1:st value > 2:nd value"
40 D$="1:st value ≤ 2:nd value"
50 IF A%>B% THEN PRINT C$ ELSE PRINT D$
60 END
RUN

Another way to compare the two values in the example above is to
use three IF...THEN statements:
10 INPUT "Enter first value ", A%
20 INPUT "Enter second value ", B%
30 C$="First value is larger than second value"
40 D$="First value is less than second value"
50 E$="First value and second value are equal"
60 IF A%>B% THEN PRINT C$
70 IF A%<B% THEN PRINT D$
80 IF A%=B% THEN PRINT E$
90 END
RUN

IF...THEN...[ELSE]...ENDIF
If is also possible to execute multiple THEN and ELSE statements.
Each statement must be entered on a separate line and end of the
instruction must be indicated by ENDIF on a separate line, as
illustrated by the following example:
10 TIME$ = "121500":FORMAT TIME$ "HH:MM"
20 A%=VAL(TIME$)
30 IF A%>120000 THEN
40 PRINT "TIME IS ";TIME$("F"); ". ";
50 PRINT "GO TO LUNCH!"
60 ELSE
70 PRINT "CARRY ON - ";
80 PRINT "THERE'S MORE WORK TO DO!"
90 ENDIF
RUN

yields e.g.:
TIME IS 12:15. GO TO LUNCH!

☞ TRUE and FALSE
Also see:
• Chapter 4.9 (Relational Operators)

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 32

Chapter 5 UBI Fingerprint Programming

5.6 Unconditional
Branching

GOTO
The most simple type of unconditional branching is the “waiting
loop”. This means that a program line branches the execution to
itself, waiting for something to happen, for example a key being
pressed or a communication buffer becoming full.

This example shows how the program waits for the key F1 to be
pressed (line 30). Then a signal is emitted by the printer's buzzer:
10 ON KEY (10) GOSUB 1000
20 KEY (10) ON
30 GOTO 30
40 END
1000 SOUND 880,100
1010 END
RUN

It is also possible to branch to a different line. This is useful when
you want create a waiting loop containing a number of lines.

Example:
10 INPUT "Enter a number:", A%
20 IF A%<0 THEN GOTO 100 ELSE GOTO 200
30 GOTO 10
40 END
100 PRINT "NEGATIVE VALUE"
110 GOTO 40
200 PRINT "POSITIVE VALUE"
210 GOTO 40
RUN

The GOTO statement in line 30 diverts the execution back to line 10
over and over again until you type a value on the host (waiting loop).
Depending on whether the value is less than 0 or not, the execution
branches to one of two alternative lines (100 or 200), which print
different messages to the screen. In both cases, the execution
branches to line 40, where the program ends.

There are more elegant ways to create such a program, but this
example illustrates how GOTO always branches to a specific line.
Line 20 is an example of conditional branching, which is explained
in chapter 5.8.

☞ Keyboard Control
Also see:
• Chapter 15.1

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 33

Chapter 5 UBI Fingerprint Programming

5.7 Branching to
Subroutines

GOSUB and RETURN
A subroutine is a number of program lines intended to perform a
specific task, separately from the main program execution. Branch-
ing to subroutine can e.g. take place when:
• An error condition occurs.
• A condition is fulfilled, such as a certain key being pressed or a

variable obtaining a certain value.
• A break instruction is received.
• Background communication is interrupted.

Another application of subroutines is branching to one and the same
routine from different places in the same program. Thereby, you do
not need to write the routine more than once and can make the
program more compact.

The main instruction for branching to subroutines is the GOSUB
statement. There are also a number of instructions for conditional
branching to subroutines, which will be explained later in this
chapter.

After branching, the subroutine will be executed line by line until
a RETURN statement is encountered.

The same subroutine can be branched to as many times as you need
from different lines in the main program. GOSUB remembers where
the last branching took place, which makes it possible to return to
the correct line in the main program after the subroutine has been
executed. Subroutines may be nested, i.e. a subroutine may contain
a GOSUB statement for branching to a secondary subroutine etc.

Subroutines should be placed on lines with higher numbers than the
main program. The main program should be appended by an END
statement to avoid unintentional execution of subroutines.

Example illustrating nested subroutines:
10 PRINT "This is the main program"
20 GOSUB 1000
30 PRINT "You're back in the main program"
40 END
1000 PRINT "This is subroutine 1"
1010 GOSUB 2000
1020 PRINT "You're back from subroutine 2 to 1"
1030 RETURN
2000 PRINT "This is subroutine 2"
2010 GOSUB 3000
2020 PRINT "You're back from subroutine 3 to 2"
2030 RETURN
3000 PRINT "This is subroutine 3"
3010 PRINT "You're leaving subroutine 3"
3020 RETURN
RUN

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 34

Chapter 5 UBI Fingerprint Programming

5.8 Conditional
Branching

As the name implies, conditional branching means that the program
execution branches to a certain line or subroutine when a specified
condition is fulfilled. The following instructions are used for
conditional branching:

IF...THEN GOTO...ELSE
If a specified condition is TRUE, the program branches to a certain
line, but if the condition is FALSE, something else will be done.

Example:
10 INPUT "Enter a value: ",A%
20 INPUT "Enter another value: ",B%
30 IF A%=B% THEN GOTO 100 ELSE PRINT "NOT EQUAL"
40 END
100 PRINT "EQUAL"
110 GOTO 40
RUN

ON...GOSUB
Depending on the value of a numeric expression, the execution will
branch to one of several subroutines. If the value is 1, the program
will branch to the first subroutine in the instruction, if the value is
2 it will branch to the second subroutine and so on.

Example:
10 INPUT "Press key 1, 2, or 3 on host: ", A%
20 ON A% GOSUB 1000, 2000, 3000
30 END
1000 PRINT "You have pressed key 1": RETURN
2000 PRINT "You have pressed key 2": RETURN
3000 PRINT "You have pressed key 3": RETURN
RUN

ON...GOTO
This instruction is similar to ON...GOSUB but the program will
branch to specified lines instead of subroutines. This implies that
you cannot use RETURN statements to go back to the main program.

Example:
10 INPUT "Press key 1, 2, or 3 on host: ", A%
20 ON A% GOTO 1000, 2000, 3000
30 END
1000 PRINT "You have pressed key 1": GOTO 30
2000 PRINT "You have pressed key 2": GOTO 30
3000 PRINT "You have pressed key 3": GOTO 30
RUN

☞ Relational Operators
Also see:
• Chapter 4.9

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 35

Chapter 5 UBI Fingerprint Programming

ON BREAK...GOSUB
When a BREAK condition occurs on a specified device, the execu-
tion will be interrupted and branched to a specified subroutine.
There, you can e.g. let the printer emit a sound signal or display a
message before the program is terminated. You can also let the
program execution continue along a different path.

In this example the program is interrupted when the <Shift> and
<Pause> keys on the printer's keyboard are pressed (default). The
execution branches to a subroutine, which emits a siren-sounding
signal three times. Then the execution returns to the main program,
which is indicated by a long shrill signal. You can also issue a break
interrupt by transmitting the character “#" (ASCII 35 dec.) from the
host on the communication channel "uart1:".
10 BREAK 1,35
20 BREAK 1 ON
30 ON BREAK 0 GOSUB 1000:REM Break from keyboard
40 ON BREAK 1 GOSUB 1000:REM Break from host (#)
50 GOTO 40
60 SOUND 800,100
70 BREAK 1 OFF: END
1000 FOR A%=1 TO 3
1010 SOUND 440,50
1020 SOUND 349,50
1030 NEXT A%
1040 GOTO 60
RUN

ON COMSET...GOSUB
When one of several specified conditions interrupts the background
communication on a certain communication channel, the program
branches to a subroutine, e.g. for reading the buffer. The interrupt
conditions (end character, attention string and/or max. number of
characters) are specified by a COMSET statement.

Example:
1 REM Exit program with #STOP&
10 COMSET1,"#","&","ZYX","=",50
20 ON COMSET 1 GOSUB 2000
30 COMSET 1 ON
40 IF A$ <> "STOP" THEN GOTO 40
50 COMSET 1 OFF
60 END
1000 END
2000 A$= COMBUF$(1)
2010 PRINT A$
2020 COMSET 1 ON
2030 RETURN

5.8 Conditional
Branching, cont'd.

☞ Background Communication
Also see:
• Chapter 7.8

☞ Breaking the Execution
Also see:
• Chapter 5.12

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 36

Chapter 5 UBI Fingerprint Programming

5.8 Conditional
Branching, cont'd.

☞ Branching at Errors
Also see:
• Chapter 16.3

Two instructions are used to branch to and from an error-handling
subroutine when an error occurs:

ON ERROR GOTO
This statement branches the execution to a specified line when any
kind of error occurs, ignoring the standard error-trapping routine. If
line number is specified as 0, the standard error-trapping routine
will be used.

RESUME
The RESUME statement is used to resume the program execution
after an error-handling subroutine has been executed. RESUME is
only used in connection with ON ERROR GOTO statements and can
be used in five different ways:

RESUME Execution is resumed at the state-
ment where the error occurred.

RESUME 0 Same as RESUME.
RESUME NEXT Execution is resumed at the state-

ment immediately following the
one that caused the error.

RESUME <ncon> Execution is resumed at the speci-
fied line.

RESUME <line label> Execution is resumed at the speci-
fied line label.

This example shows branching to a subroutine when an error has
occurred. The subroutine determines the type of error and takes the
appropriate action. In this example only one error; “1019 Invalid
font” is checked. After the error is cleared by substituting the
missing font, the execution will be resumed.
10 ON ERROR GOTO 1000
20 PRTXT "HELLO"
30 PRINTFEED
40 END
1000 IF ERR=1019 THEN FONT "Swiss 721 BT" ELSE GOTO 2000
1010 PRINT "Substitutes missing font"
1020 FOR A%=1 TO 3
1030 SOUND 440,50
1040 SOUND 359,50
1050 NEXT A%
1060 RESUME
2000 PRINT "Undefined error, execution terminated"
2010 END
RUN

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 37

Chapter 5 UBI Fingerprint Programming

ON KEY...GOSUB
All present UBI Fingerprint 7.xx-compatible printers are provided
with a built-in keyboard. However, unless there is a program
running in the printer, e.g. UBI Shell, the keys have no purpose
(with the exception of <Print >, <Feed>, <Shift>, and <Setup>
keys, which work in the Immediate Mode). To make use of the
keyboard, each key must be enabled individually by means of a KEY
ON statement and then be assigned to a subroutine using an ON KEY
GOSUB statement. The subroutine should contain the instructions
you want to be performed when the key is pressed.

In the statements KEY (<id.>)ON , KEY (<id.>)OFF , and ON
KEY (<id.>)GOSUB... , the keys are specified by id. numbers
enclosed by parentheses, see chapter 15.1.

Note that ON KEY...GOSUB excludes input from the printer's
keyboard (see chapter 7.6) and vice versa.

This example shows how the two unshifted keys <F1> (id. No. 10)
and <F2> (id. No. 11) are used to change the printer's setup in
regard of printout contrast.
10 PRPOS 100,500
20 PRLINE 100,100
30 FONT "Swiss 721 BT"
40 PRPOS 100,300
50 MAG 4,4
60 PRTXT "SAMPLE"
70 KEY (10) ON : KEY (11) ON
80 ON KEY (10) GOSUB 1000
90 ON KEY (11) GOSUB 2000
100 GOTO 70
110 PRINTFEED
120 END
1000 SETUP "MEDIA,CONTRAST,-10%"
1010 PRPOS 100,100 : PRTXT "Weak Print"
1020 RETURN 110
2000 SETUP "MEDIA,CONTRAST,10%"
2010 PRPOS 100,100 : PRTXT "Dark Print"
2030 RETURN 110
RUN

5.8 Conditional
Branching, cont'd.

☞ Keyboard Control and Key Id. No:s
Also see:
• Chapter 15.1

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 38

Chapter 5 UBI Fingerprint Programming

5.9 Loops GOTO
One type of loop has already been described in connection with the
GOTO statement in chapter 5.6, where GOTO was used to refer to the
same line or a previous line. There are also two more advanced type
of loops:

FOR...NEXT
These statements are to used create loops, where a counter is
incremented or decremented until a specified value is reached. The
counter is defined by a FOR statement with the following syntax:

FOR<numeric variable>=<start value>TO<final value>[STEP< ±interval>]

All program lines following the FOR statement will be executed
until a NEXT statement is encountered. Then the counter will be
updated according to the optional STEP value, or by the default
value +1, and the loop will be executed again. This will be repeated
until the final value, as specified by TO <finalvalue> , is
reached. Then the loop is terminated and the execution proceeds
from the statement following the NEXT statement.

FOR...NEXT loops can be nested, i.e. a loop can contain another
loop etc. Each loop must have a unique counter designation in the
form of a numeric variable. The NEXT statement will make the
execution loop back to the most recent FOR statement. If you want
to loop back to a different FOR statement, the corresponding NEXT
statement must include the same counter designation as the FOR
statement.

This example shows how five lines of text entered from the keyboard
of the host can be printed with an even spacing:
10 FONT "Swiss 721 BT"
20 FOR Y%=220 TO 100 STEP -30
30 LINE INPUT "Type text: ";TEXT$
40 PRPOS 100, Y%
50 PRTXT TEXT$
60 NEXT
70 PRINTFEED
80 END
RUN

Here is an example of two nested FOR...NEXT loops:
10 FOR A%=20 TO 40 STEP 20
20 FOR B%=1 TO 2
30 PRINT A%,B%
40 NEXT : NEXT A%
RUN

Yields:
20 1
20 2
40 1
40 2

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 39

Chapter 5 UBI Fingerprint Programming

5.9 Loops, cont'd. FOR...NEXT, cont'd.
This example shows how an incremental counter can be made:
10 INPUT "Start Value: ", A%
20 INPUT "Number of labels: ", B%
30 INPUT "Increment: ", C%
40 X%=B%*C%
50 FOR D%=1 TO X% STEP C%
60 FONT "Swiss 721 BT",24
70 PRPOS 100,200
80 PRTXT "TEST LABEL"
90 PRPOS 100,100
100 PRTXT "COUNTER: "; A%
110 PRINTFEED
120 A%=A%+C%
130 NEXT D%
RUN

WHILE...WEND
These statements are used to create loops where series of statements
are executed provided a given condition is TRUE.

WHILE is supplemented by a numeric expression, that can be either
TRUE (-1) or FALSE (0). If the condition is TRUE, all subsequent
program lines will be executed until a WEND statement is encoun-
tered. The execution then loops back to the WHILE statement and
the process is repeated, provided the WHILE condition still is
TRUE. If the WHILE condition is FALSE, the execution bypasses
the loop and resumes at the statement following the WEND state-
ment.

WHILE...WEND statements can be nested. Each WEND statement
matches the most recent WHILE statement.

This example shows a program that keeps running in a loop (line
20–50) until you press the Y key on the host (ASCII 89 dec.), i.e. the
WHILE condition becomes true.
10 B%=0
20 WHILE B%<>89
30 INPUT "Want to exit? Press Y=Yes or N=No",A$
40 B%=ASC(A$)
50 WEND
60 PRINT "The answer is Yes"
70 PRINT "You will exit the program"
80 END
RUN

☞ Relational Operators
Also see:
• Chapter 4.9

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 40

Chapter 5 UBI Fingerprint Programming

5.10 Program
Structure

Although UBI Fingerprint gives the programmer a lot of freedom
in how to compose his programs, based on experience we recom-
mend that the structure below is more or less implemented, with the
obvious exception of such facilities that are not needed.

❑ Program Information
• Program information, e.g. program type, version, release date

and byline (REM).

❑ Initiation
Decides how printer will work and branch to subroutines.
• References to subroutines using e.g. ON BREAK GOSUB,

ON COMSETGOSUB, ON ERROR GOSUB, ON KEY GOSUB.
• Printer setup using e.g. SETUP, OPTIMIZEON/OFF, LTS&

ON/OFF, CUT ON/OFF, FORMATDATE$, FORMATTIME$,
NAME DATE$, NAME WEEKDAY$, SYSVAR.

• Character set and map tables (NASC, NASCD, MAP).
• Enabling keyboard (KEY ON, KEYBEEP, KEYBMAP$).
• Initial LED setting (LED ON/OFF).
• Open "console:" for output (OPEN)
• Assign string variables for each line in the display (PRINT#).
• Select current directory (CHDIR).
• Select standard I/O channel (SETSTDIO).
• Open communication channels (OPEN).
• Open files (OPEN).
• Define arrays (DIM).

❑ Main Loop
Executes the program and keeps it running in a loop.
• Reception of input data (INPUT, INPUT#, INPUT$, LINE

INPUT#).
• Printing routine (FORMFEED, PRINTFEED, CUT).
• Looping instructions (GOTO).

❑ Subroutines
• Break subroutines (BREAK ON/OFF, BREAK).
• Background communication subroutines (COM ERROR ON/

OFF, COMSET, COMSETON/OFF, COMBUF$, COMSTAT).
• Subroutines for key-initiated actions.
• Subroutines for display messages.
• Error handling subroutines (ERR, ERL, PRSTAT).
• Label layouts subroutines.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 41

Chapter 5 UBI Fingerprint Programming

5.11 Execution

1/. For a working two-way communi-
cation, three conditions must be fulfilled:
• Serial communication
• Std IN channel = Std OUT channel
• Verbosity on

To start the execution of the program currently residing in the
printer's working memory, issue a RUN statement in the Immediate
Mode, i.e. without a preceding line number. By default, the program
will be executed in ascending line number order – with the
exception of possible loops and branches – starting from the line
with the lowest number, but you can optionally start the execution
at a specified line.

You can also execute a program that is not LOADed.

If a program has been written without line numbers, the lines will
be numbered 10-20-30-40-50.... etc.

The first program or hardware error that stops the execution will
cause an error message to be returned to the screen of the host,
provided there is a working two-way communication1. In case of
program errors, the number of the line where the error occurred will
also be reported by default, e.g. “Field out of label in line 110”.
After the error has been corrected, the execution must be restarted
by means of a new RUN statement, unless a routine for dealing with
the error in question is included in the program.

For demonstration purposes, we will now:
• write a short program without line numbers,
• execute it,
• and finally list it.

NEW
Ok
IMMEDIATE OFF
Ok
REM This is a demonstration program
PRINT "This is the main program"
GOSUB sub1
END
sub1: PRINT "This is a subroutine":' Line label
RETURN
IMMEDIATE ON
Ok
RUN

yields:
This is the main program
This is a subroutine
Ok
LIST

yields:
10 REM This is a demonstration program
20 PRINT "This is the main program"
30 GOSUB SUB1
40 END
50 SUB1: PRINT "This is a subroutine" : ' Line label
60 RETURN

☞ Standard Error-Handling
Also see:
• Chapter 16.1

Note:
For program instructions you can
usually use upper- or lowercase
characters at will , i.e. “NEW” and “ new”
will work the same way.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 42

Chapter 5 UBI Fingerprint Programming

5.12 Breaking the
Execution

1/. BREAK does not work on the parallel
Centronics channel.

In chapter 2 “Getting Started” at the beginning of this manual, the
methods of breaking a startup program was briefly explained.
Startup programs (autoexec files) start up automatically when the
printer is turned on and continues to run infinitely by means of some
kind of loop.

You can – by default – break a program by pressing the <Shift> key
and keep it pressed while you also press down the <Pause> key.
There is – by default – no break facilities from the host via any
communication channel. Therefore, it is strongly recommended
always to include break facilities in startup programs.

If the startup program resides in a memory card, you can of course
turn off the printer, remove the card and start up again.

Four instructions can be used for providing a program with a break
interrupt facility:
BREAK Specifies an interrupt character.
BREAK...ON Enables break interrupt.
BREAK...OFF Disables break interrupt.
ON BREAK...GOSUB... Branches the execution to a sub-

routine when a break interrupt is
executed.

In all break-related instructions, the serial communication chan-
nels1 and the keyboard are referred to by numbers:
0 = "console:" (i.e. the printer's keyboard)
1 = "uart1:"
2 = "uart2:"

BREAK
The BREAK statement specifies an interrupt character by its decimal
ASCII value. BREAK can be separately specified for each serial
communication channel and for the printer's built-in keyboard.

The interrupt character for all serial channels is by default ASCII 03
dec. (ETX). Also see BREAK...ON .

The interrupt character from the printer's keyboard is by default
ASCII 158 dec. (<Shift> + <Pause> keys). Also see BREAK...ON .

BREAK...ON
Break interrupt for all serial communication channels is disabled
by default, but can be enabled by means of a BREAK...ON
statement for the channel in question.

Break interrupt from the keyboard is enabled by default.

BREAK... OFF
The BREAK...OFF statement revokes BREAK...ON for the speci-
fied device and deletes the specified break character from the
printer's memory.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 43

Chapter 5 UBI Fingerprint Programming

ON BREAK ...GOSUB...
This instruction is not necessary for issuing a break interrupt, but is
useful for making the printer perform a certain task when a break
occurs, e.g. branch the execution to another part of the program,
show a message in the display, emit a warning signal, ask for a
password etc. ON BREAK... GOSUB... can be specified
separately for each serial communication channel and for the
keyboard.

This example shows how a break interrupt will occur when you
press the X-key (ASCII 88 dec.) on the host connected to "uart1:".
A signal is emitted and a message appears in the printer's display.
10 BREAK 1,88
20 BREAK 1 ON
30 OPEN "console:" FOR OUTPUT AS 1
40 PRINT #1 : PRINT #1
50 PRINT #1, "Press X"
60 PRINT #1, "to break program";
70 ON BREAK 1 GOSUB 1000
80 GOTO 80
90 BREAK 1 OFF
100 END
1000 SOUND 880,50
1010 PRINT #1 : PRINT #1
1020 PRINT #1, "PROGRAM"
1030 PRINT #1, "INTERRUPTED";
1040 RETURN 90
RUN

Saving in Printer
When you are satisfied with the program, you can SAVE it in the
printer's permanent memory ("c:"), in the printer's temporary
memory ("tmp:") or in a DOS-formatted memory card ("card1:"),
see chapter 6.1. Obviously, if you save it in "tmp:", it will be lost at
power off or at a power failure.

It is also recommended to LIST the program back to the host and
make backup copy, e.g. on a floppy disk.

Naming the Program
When you save a program for the first time, you must give it a name
consisting of up to 30 uppercase characters including possible
extension. If you omit the extension, the firmware will add the
extension “.PRG” automatically. When naming the program, con-
sider conventions and restrictions imposed by the operating system
of the host, e.g. MS-DOS, Windows 3.11, Windows 95 etc.

If the program or file name starts with a period character, it will be
regarded a system file, see FILES and FORMAT statements in the
UBI Fingerprint 7.xx Reference Manual.

5.12 Breaking
Execution, cont'd.

Note:
A break interrupt character is saved in the
printer's temporary memory, and will not
be removed before the printer is restarted,
unless you specifically delete it by a
BREAK...OFF statement for the device
in question.

5.13 Saving the
Program

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 44

Chapter 5 UBI Fingerprint Programming

The following names are used for standard UBI Fingerprint
programs and should not be used:

• .setup.saved Current setup values
• .theDefaultSetup Default setup values
• .ubipfr1.bin Standard fonts
• APPLICATION UBI Shell auxiliary file
• DIRECT UBI Shell auxiliary file
• ERRHAND.PRG Error Handler
• FILELIST.DAT UBI Shell auxiliary file
• FILELIST.PRG List the lines of a file
• LBLSHTXT.PRG UBI Shell auxiliary file
• LINE_AXP.PRG UBI Shell Line Analyzer
• LSHOPXP1.SUB UBI Shell auxiliary file
• MKAUTO.PRG Create a startup (autoexec) file
• PUP.BAT UBI Shell Startup file
• SHELLXP.PRG UBI Shell startup program
• STDIO UBI Shell auxiliary file
• WINXP.PRG UBI Shell auxiliary file

Examples:
SAVE "PROGRAM1"
saves the program as PROGRAM1.PRG in the current directory
(by default "c:").

SAVE "card1:PROGRAM1.TXT"
saves the program as PROGRAM1.TXT in a DOS-formatted
memory card inserted in the printer's optional memory card
adapter.

Protecting the Program
When a program is SAVEd, it can optionally be protected, i.e. it
cannot be listed after being loaded and program lines cannot be
changed, added or deleted. Once a program has been protected, it
cannot be deprotected. Thus, make an unprotected backup copy as
a safety measure, should you need to make any changes later.

Example (saves and protects the program as PROGRAM1.PRG in
the current directory (by default "c:"):
SAVE "PROGRAM1.PRG",P

Saving Without Line Numbers
A program can also be SAVEd without line numbers to make it
easier to MERGE it with another program without risking that the
line numbers interfere. Both programs should make use of line
labels for referring to other lines, e.g. in connection with loops and
branching instructions.

Example (saves the program as PROGRAM1.PRG without line
numbers in the current directory (by default "c:"):
SAVE "PROGRAM1.PRG",L

5.13 Saving the
Program, cont'd.

☞ Current Directory
Also see:
• Chapter 6.1

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 45

Chapter 5 UBI Fingerprint Programming

Making Changes
If you LOAD a program, possibly make some changes and then
SAVE the program under the original name and in the original
directory, the original program will be replaced.

Example (changes the value of a variable in line 50 of a program
and replaces the original version with the changed version):
LOAD "PROGRAM1.PRG"
50 A%=300
SAVE "PROGRAM1.PRG"

Making a Copy
The easiest way to copy a program is to use a COPY statement. You
can optionally include directory references in the statement.

Example (copies a program from the permanent memory to a DOS-
formatted memory card and gives the copy a new name):
COPY "c:FILELIST.PRG","card1:COPYTEST.PRG"

If you LOAD a program and then SAVE it under a new name and/or
in another directory, you will create a copy of the original program.

Example (creates a copy of the program LABEL1.PRG and gives
the copy the name LABEL2.PRG):
LOAD "LABEL1.PRG"
SAVE "LABEL2.PRG"

Renaming a Program
To rename a program, LOAD it, SAVE it under a new name, and
finally KILL the original program.

Example (renames LABEL1.PRG with the name LABEL2.PRG):
LOAD "LABEL1.PRG"
SAVE "LABEL2.PRG"
KILL "LABEL1.PRG"

Note: The same general principles also apply to files!

Saving in Non DOS-formatted Memory Cards
Saving a program or file in non DOS-formatted memory cards
requires special equipment such as a PROM programmer and the
aid of the UBI Configuration program, which is included in UBI
Toolbox. You can edit and test the program in the printer's working
memory as described earlier in this chapter. When it works prop-
erly, LIST it back to the host computer or COPY it to a serial
communication channel. Save the file in the host and use UBI
Configuration to convert it to a format suitable for the memory card
programming device. Refer to the UBI Toolbox Programmer's
Manual for further information.

5.13 Saving the
Program, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 46

Chapter 5 UBI Fingerprint Programming

Creating a Startup Program
The MKAUTO.PRG program is used to create so called startup
programs or autoexec-files, i.e. programs that will be LOADed and
RUN automatically as soon as the power to the printer is turned on.
Usually, a startup program contains some kind of loop which makes
it run infinitely, awaiting some input or action from the operator.

There must not be more than one startup program in each part of the
memory, i.e.:
• DOS-formatted memory cards ("card1:"):

Max. one startup program per card.
• Non DOS-formatted memory cards ("rom:"):

Max. one startup program per card.
• Printer's permanent memory ("c:"):

Max. one startup program.

If there are more than one startup file in the printer's memory, they
will be used with the following priority:
1. An autoexec.bat file in any type of memory card ("rom:" or

"card1:") that was inserted at start-up.
2. An autoexec.bat file in printer's permanent memory ("c:")
3. The pup.bat file (UBI Shell) in the systems part of the printer's

permanent memory ("rom:")

The MKAUTO.PRG program is included in the systems part of the
printer's memory ("rom:") and consists of the following lines:
10 OPEN "AUTOEXEC.BAT" FOR OUTPUT AS 1
20 INPUT "Startup file name:",S$
30 PRINT#1,"RUN";CHR$(34);S$;CHR$(34)
40 CLOSE1

A startup program can easily be created from an ordinary program
using the following method:
• After having written and tested the program, SAVE it.
• Enter the following statement:

RUN "rom:MKAUTO"
• The following prompt will be displayed on the screen:

STARTUP FILE NAME?
• Type the name of the program you just SAVEd (with or without

the extension .PRG) and press the Carriage Return key.
• Ok on the screen indicates that the operation is ready.
• The startup program will be stored in the printer's current

directory (by default "c:", i.e. the printer's permanent memory).
• When you restart the printer, the new startup program will start

running, provided there is no other startup program with higher
priority (see previous page).

To undo the operation, use the statement:

KILL "AUTOEXEC.BAT"

This will not erase the original program, but it will no longer be used
as a startup program. Note that you cannot KILL startup programs
stored in "rom:".

5.13 Saving the
Program, cont'd.

☞ Current Directory
Also see:
• Chapter 6.1

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 47

Chapter 5 UBI Fingerprint Programming

5.14 Rebooting the
Printer

Rebooting the printer has the same consequences as turning off and
then on the power.

REBOOT
This statement allows you to reboot the printer from the host or as
a part of the program execution.

When the printer is rebooted, or the power to the printer is turned
on, a number of things happens:
• The printer's temporary memory ("tmp:") is erased, i.e. any

program not already SAVEd to "c:" or "card1:" will be irrevoca-
bly lost, all buffers will be emptied, all files will be closed, all
date- and time-related formats will be lost, all arrays will be lost
and all variables will be set to zero. Fonts and images stored in
the temporary memory will be erased.

• All parameters in UBI Fingerprint instructions will be reset to
default.

• The printer performs a number of self-diagnostic tests, e.g.
printhead resistance check (certain models only) and memory
checksum calculations.

• The printer checks for possible optional devices like interface
boards or cutter.

• The various parts of the printer's memory are searched for
possible startup programs as described in chapter 5.13. The first
startup program encountered will be executed.

Note that rebooting does not change the printer's setup, unless any
physical changes has been done to the printer during the power-off
period, such as a change of printhead or installation or removal of
an interface board.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 48

Chapter 6 File System

6.1 Printer's Memory The printer's memory consists of a number of parts, or directories:

• Permanent Memory ("rom:" and "c:")
The permanent memory resides in one or several flash memory
SIMMs. A flash SIMM will keep it contents when the power to
the printer is off without the aid of a battery backup system.

Each SIMM contains a number of sectors. Some sectors that are
both read and write capable, whereas other are read-only. A read/
write sector is typically 256 kbytes and consists a number of
pointers and blocks, each with a size of 1 kbyte. A pointer can
refer to several blocks and also to another pointer. If just a single
character (one byte) is entered1, a whole 1 kbyte block and one
1 kbyte pointer will be occupied. On the other hand, e.g. 4.5
kbytes of data requires one 1 kbyte pointer and five 1 kbyte
blocks.

When there are no free blocks left in any sector and at power up,
the memory will automatically be reorganized to save space.
Before reorganization, the sector is copied to a temporary sector
for safety reason if something should go wrong. Files are
rewritten into as few blocks as possible and the number of
pointers is thus reduced. Then the sector is erased and the content
is copied back from the temporary sector. This takes some time
and makes the flash memory comparatively slow.

One SIMM must always be present and contains a boot sector
and a number of sectors containing the so called “kernel”.

There is also a temporary area for paper feed info and odometer
values. All these sectors are read-only and are included in the
device "rom:" .

The remaining part of the same flash memory SIMM contains
a number of read/write sectors and is designated as device "c:" .
If there are additional flash SIMMs for the permanent memory,
they are also included in the device "c:" .

The following table illustrates the boot flash SIMM for an
EasyCoder 501XP/601 XP printer:

Device Size Sector Used for
c: 256 kbyte Intel VFM FOS Customer's programs, files, images etc.

256 kbyte Intel VFM FOS
256 kbyte TMP area (FOS)

rom: 256 kbyte Kernel UBI Fingerprint firmware, bar codes, standard
256 kbyte Kernel fonts, standard images, UBI Shell, auxiliary
256 kbyte Kernel programs1, setup values
256 kbyte Kernel
192 kbyte Kernel

rom: 16 kbyte TMP area Paper feed info, odometer value
16 kbyte Parameters

rom: 32 kbyte Boot Startup

6. File System

Chapter 6

Abbreviations:
SIMM = Standard In-line Memory

Module
DRAM = Dynamic Random Access

Memory
VFM = Virtual Small Block File

Manager
FOS = File Operating System
ROM = Read Only Memory

1/. This applies to the following instruc-
tions:
???????
???????

Note:
To provide compatibility with earlier
versions of UBI Fingerprint, the device
"ram:" is equal to "c:".

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 49

Chapter 6 File System

• Temporary Memory ("temp:")
The temporary memory (device "tmp:") is a read/write DRAM
(Dynamic Random Access Memory) and residies in one or
several SIMM packages. It has no backup and will be com-
pletely erased at power-off.

The temporary memory is used for the following purposes:
- To execute UBI Fingerprint instructions. At startup the kernel

in the permanent memory is copied to the temporary memory,
where all UBI Fingerprint instructions are executed and the
print image bitmaps are created.

- To be used for the print image buffers.
- To be used for the font cache.
- To be used for the Receive/Transmit buffers. Each serial

communication channel must have one buffer of each kind.
The size of each buffer is decided separately by the setup.

– To be used for communication buffers. In a program, you may
set up one communication buffer for each communication
channel. This makes it possible to receive data simultaneously
from several sources to be fetched at the appropriate moment
during the execution of the program.

- To store data that do not need to be saved after power-off.
- To temporarily store data before they are copied to the

permanent memory or to a memory card.

The latter purpose is important considering how the permanent
memory works. Since the permanent flash memory is compara-
tively slow, in connection with certain instructions (see previous
page) it is more efficient to create files in the temporary memory
and then save them to the permanent memory. When speed is
important, also avoid saving data that nevertheless will be of no
use after power off in the temporary memory.

Note that there is no fixed division of the temporary memory.
After the firmware has been copied to it and the Receive/
Transmit buffers have been set according to the setup, the
remaining memory will be shared between the various tasks.

• DOS-Formatted Memory Cards: ("card1:")
The built-in memory can be supplemented with a DOS-format-
ted memory card that is inserted in the printer's memory card
adapter. Such a card is referred to as "card1:" and can be both
read from and written to. In order to retain its content when the
power to the printer is off, each SRAM memory card is fitted
with an internal battery.

6.1 Printer's
Memory, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 50

Chapter 6 File System

• Non DOS-Formatted Memory Cards ("rom:")
A non DOS-formatted, preprogrammed memory card can be
inserted to supplement or update the built-in ROM memory.
There are three types of ROM cards:
- Font Cards are used to supplement the standard fonts in the

permanent memory.
- Font Install Cards are used to install addition fonts in the

printer's permanent memory.
- Firmware Cards are used to intall a new firmware version

(kernel) in the printer's permanent memory.

• Other Memory Devices ("storage:")
The "storage:" device is a small and slow memory device that is
used for special application. It should not be used for normal UBI
Fingerprint preogramming.

Current Directory
“Current directory” means the directory the UBI Fingerprint soft-
ware will use unless you specifically instruct it to use another
directory. By default, the current directory is "c:".

To appoint another directory as current directory, use a CHDIR
statement.

Example:
Changing directory from the default directory ("c:") to "tmp:" and
back.
10 CHDIR "tmp:"
.
90 CHDIR "c:"

Checking Free Memory
You can check the size of the memory in the current directory and
see how much free space there is by issuing a FILES statement in
the immediate mode.

Another way is to use the FRE function to make a small instruction,
that returns the number of free bytes in the printer's temporary
memory, for example:

PRINT FRE(1)
yields e.g.:

391248

Providing More Free Memory
In order to free more memory space in the temporary memory, you
can use a CLEAR statement to empty all strings, set all variables to
zero and reset all arrays to default. If even more memory is required,
you will have to consider either to KILL some programs or files, or
to use REMOVEIMAGE to delete some images stored in "c:" and/or
"tmp:". If the printer is not fitted with the maximum size memory,
you could also fit more or larger Flash or DRAM SIMM packages
after having made backup copies on the host.

6.1 Printer's
Memory, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 51

Chapter 6 File System

☞ Fonts, Bar Codes and Images
Also see:
• Chapter 12 (Fonts)
• Chapter 13 (Images)
• Chapter 14 (Bar codes)

Formatting the Permanent Memory
The printer's permanent memory ("c:") can be formatted either
partially or completely.

FORMAT "c:",A
erases all files in the device "c:" (hard formatting).

FORMAT "c:"
erases all files except those starting with a period (.) character (soft
formatting). System files are provided with such a period character,
e.g. .ubifr1.bin.

Formatting SRAM Memory Cards
An SRAM-type memory card, inserted in the printer's memory card
adapter, can be formatted to MS-DOS format by means of a
FORMAT statement, e.g.:

FORMAT "card1:",208,512,A

File Types
A number of different types of files can be stored in the various parts
of the printer's memory. They can be divided into four main groups:
• Program Files
• Data Files
• Image Files
• Font Files
Object files, fonts, bar codes and images are not treated as files by
the UBI Fingerprint firmware.

File Names
The name of a file may consist of up to 30 characters including
extension, but possible restrictions imposed by the operating sys-
tem of the host should be considered if the file is to be transferred.
Refer to chapter 5.13 for a list of reserved file names.

Listing Files
The files stored in the printer's memory can be listed by means of
a FILES statement. By default, the files stored in the current
directory will be listed. Optionally, another directory can be se-
lected by adding a device reference to the FILES statement, e.g.:

FILES lists all files in the current directory.
FILES "c:" lists all files in the read/write part of the

permanent memory
FILES "rom:" lists all files stored in the read-only part of the

permanent memory (kernel) and in any in-
serted non DOS-formatted memory card.

FILES "tmp:" lists all files stored in the printer's temporary
memory.

FILES "card1:" lists all files stored in any inserted DOS-
formatted memory card.

6.2 Files

6.1 Printer's
Memory, cont'd.

☞ Current Directory
Also see:
• Chapter 6.1

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 52

Chapter 6 File System

You can COPY a file to the standard OUT channel, where it will be
printed on the screen of the host, e.g.:

COPY "[device]filename ", "uart1:"

The FILELIST.PRG program included in the UBI Fingerprint
firmware is used to LIST a line-orientated file to the standard OUT
channel:

• On your terminal, enter:
RUN "rom:FILELIST.PRG "

• The printer will respond by prompting you to enter the name of
the file to be listed:
Filename?

• Enter the filename, possibly preceded by a directory reference,
e.g.
"c:*.*"

Program File Types
Program files are used to run and control the printer and to produce
labels or other printouts. A program file is always composed of
numbered lines, although the numbers may be invisible during the
editing process (see chapter 5.4).

A special case of program files is startup files, i.e. files that
automatically start running when the printer is turned on (also called
“autoexec-files”). Startup files were explained in chapter 5.13
“Creating a Startup Program”.

Instructions
The following instructions are used for creating and handling
program files:

LOAD Copies a specified program file to the printer's working
memory.

LIST Lists the program file in the working memory to the
standard OUT channel, usually the screen of the host.

MERGE Adds copy of a specified program file to the program
file currently residing in the printer's working memory.

RUN Executes the instruction in the program file. Must be
issued in the Immediate Mode, i.e. not in a numbered
line.

SAVE Saves a copy of the program file in the current directory
or, optionally, in another specified directory. If a file
with the same name already exists the that directory, it
will be replaced by the new file.

NEW Clears the working memory to allow a new program
file to be created.

COPY Copies a file to another name and/or directory.
KILL Deletes a file from the printer's permanent memory

("c:"), the printer's temporary memory ("tmp:") or
from a DOS-formatted memory card ("card1:").

6.3 Program Files

☞ Standard OUT channel
Also see:
• Chapter 7.1

6.2 Files, cont'd.

☞ Standard OUT Channel
Also see:
• Chapter 7.1

☞ Creating, Saving, Copying, Killing
and Executing Program Files
Also see:
• Chapter 5.11 and 5.13

☞ Current Directory
Also see:
• Chapter 6.1

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 53

Chapter 6 File System

6.4 Data Files Data File Types
Data files are used by the program files for storing various types of
data and can be divided into several subcategories:

• Sequential Input Files See chapter 7.4
• Sequential Output Files See chapter 8.3
• Sequential Append Files See chapter 8.3
• Random Access Files See chapters 7.5 and 8.4

Instructions
The following instructions are used in connection with the creation
and handling of data files:

OPEN Creates and/or opens a file for a specified
mode of access and optionally specifies
the record size in bytes.

CLOSE Closes an OPENed file.
REDIRECT OUT Creates a file to which the output data will

be redirected (see chapter 8.2).
TRANSFERSET Sets up the transfer of data between two

files.
TRANSFER$ Executes the transfer of data between two

files according to TRANSFERSET.
COPY Copies a file to another name and/or di-

rectory.
KILL Deletes a file.
LOC Returns the position in an OPENed file.
LOF Returns the length in bytes of an OPENed

file.

Image files in .PCX format can be downloaded and installed in the
printer's memory by means of the statement IMAGE LOAD.

Image files in .PCX format that have been downloaded to the
printer's memory using Kermit file transfer protocol (see chapter
6.8) or stored in a DOS-formatted memory card cannot be used to
produce a printable image before they have been converted to UBI
Fingerprint's internal bitmap format by means of the following
instruction:

RUN "pcx2bmp <name of .PCX file> <name of image>"

Image files in Intelhex format, or the formats UBI00, UBI01,
UBI02, UBI03 or UBI10, can be downloaded and converted to
images using the STORE IMAGE and STORE INPUT statements.

Images files can be listed by means of FILES statements.

6.5 Image Files

☞ Images
Also see:
• Chapter 14

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 54

Chapter 6 File System

Font files are files in TrueDoc (*.PFR) or TrueType (*.TTF) format
and contain scalable single or double-byte fonts complying with the
Unicode standard. The printer's standard complement of single-
byte fonts can be supplemented with additional fonts by downloading
font files to the printer using Kermit file transfer protocol (see
TRANSFER KERMIT in chapter 6.8) or using an IMAGE LOAD
statement. After a font file has been downloaded, the corresponding
font can be used immediately without any need for a reboot.

Additional fonts can also be installed using a Font Install Card or be
read from a Font Card. Note that since most double-byte fonts are
very large, there may not be enough memory space in the printer to
accommodate such fonts. In such a case, use a Font Card.

Font files can be listed by means of a FILES statements.

Text files, e.g. program files and data files in ASCII format, can be
downloaded via a communication program in the host, e.g. Win-
dows Terminal (“Transfers; Send Text File”).

Text files can be transferred back to the host, e.g. for backup
purposes, by LOADing the file and LISTing it to a communica-
tion program in the host.

Font files and some image files come in binary format and can be
downloaded from the host to the printer or vice versa using the
Kermit file transfer protocol, which is commonly used for binary
transfer of data and is included in many communication programs,
e.g. DCA Crosstalk, MS Windows Terminal, and MS Works.

Warning!
Tests have shown that MS Windows Terminal versions 3.0 and 3.1 are
unable to receive a file from the printer, even if they are capable of sending
a file to the printer.

More information on the Kermit protocol can be found in the
manual of the communication program or in the reference volume
“Kermit – A File Transfer Protocol” by Frank da Cruz (Digital Press
1987, ISBN 0-932376-88-6).

TRANSFER KERMIT
The TRANSFER KERMIT statement allows you to specify direc-
tion (Send or Receive), file name, input device and output device.
By default, a file name designated "KERMIT.FILE" will be
transferred on the standard IN or OUT channel.

Example:
The printer is set up to receive a file on the standard IN channel.
TRANSFER KERMIT "R"

6.6 Font Files

6.7 Transferring Text
Files

☞ Font Install Card and Font Card
Also see:
• Chapter ??

☞ Single and Double-byte Fonts
Also see:
• Chapter ??

6.8 Transferring
Binary Files
using Kermit

☞ Standard IN and OUT Channels
Also see:
• Chapter 7.1

Note that there is a 30 sec. timeout
between the issuing of the TRANSFER
KERMIT "R" statement and the start of
the transmission.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 55

Chapter 6 File System

TRANSFER STATUS
After a file have been transferred by means of a TRANSFER
KERMIT statement, the transfer can be checked using the TRANS-
FER STATUS statement. The statement will place the result of the
check into two one-dimensional arrays:

5-element numeric array (requires a DIM stmt):
Element 0 returns: Number of packets
Element 1 returns: Number of NAKs
Element 2 returns: ASCII value of last character
Element 3 returns: Last error
Element 4 returns: Block check type used

2-element string array (requires no DIM stmt):
Element 0 returns: Type of protocol, i.e. "KERMIT"
Element 1 returns: Last file name received

Example:
10 TRANSFER KERMIT "R"
20 DIM A%(4)
30 TRANSFER STATUS A%,B$
40 PRINT A%(0), A%(1), A%(2), A%(4), A%(4)
50 PRINT B$(0), B$(1)
RUN

If you want to transfer a file from one printer to another printer, start
by transferring the file to the host. Then disconnect the first printer
and download the file to the second printer (or have the two printers
connected to separate serial ports). After the transfer of programs
between two connected printers is completed, you can check if the
transfer was successful by means of a CHECKSUM function.

CHECKSUM
The CHECKSUM function uses an advanced algorithm on parts of
the printer's internal code. Thus, calculate the CHECKSUM on the
program in the transmitting printer before the transfer. After the
transfer is completed, LOAD the program in the receiving printer
and perform the same calculation. If the checksums are identical,
the transfer was successful.

Note that the algorithm was changed in UBI Fingerprint 4.0. Thus, the
CHECKSUM function will return other checksums in printers using earlier
versions of UBI Fingerprint than 4.0 compared to printers using 4.0 or later
versions. If possible, use the same UBI Fingerprint version in both printers.

Example:
This example calculates the checksum in the lines 10–90000 in the
program "DEMO.PRG".
LOAD "DEMO.PRG"
PRINT CHECKSUM (10,90000)

6.8 Transferring
Binary Files
using Kermit,
cont'd.

☞ Arrays
Also see:
• Chapter 6.10

Note:
Do not confuse CHECKSUM with CSUM,
see chapter 6.10 “Arrays”.

6.9 Transferring
Files Between
Printers

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 56

Chapter 6 File System

6.10 Arrays Variables containing related data may be organized in arrays. Each
value in an array is called an element. The position of each element
is specified by a subscript, one for each dimension (max 10). Each
array variable consists of a name and a number of subscripts
separated by commas and enclosed by parentheses, for example
ARRAY$(3,3,3) .

The number of subscripts in an array variable, the first time
(regardless of line number) it is referred to, decides its number of
dimensions. The number of elements in each dimension is by
default restricted to four (No. 0 – 3).

Four instructions are specifically used in connection with arrays:
DIM Specifies the size of an array in regard of

elements and dimensions.
SORT Sorts the elements in a one-dimensional

array in ascending or descending order.
SPLIT Splits a string into an array.
CSUM Returns the checksum for a string array.

DIM
If more than 4 elements are needed, or if you want to limit the size
of the array, a DIM statement can be used to specify the size of the
array in regard of the number of dimensions as well as the number
of elements in each dimension. In most cases, one- or two-
dimensional arrays will suffice.

This example shows how three 1-dimensional, 5-element arrays
can be used to return 125 possible combinations of text strings:
10 DIM TYPE$(4),COLOUR$(4),SIZE$(4)
20 TYPE$(0)="SHIRT"
30 TYPE$(1)="BLOUSE"
40 TYPE$(2)="TROUSERS"
50 TYPE$(3)="SKIRT"
60 TYPE$(4)="JACKET"
70 COLOUR$(0)="RED"
80 COLOUR$(1)="GREEN"
90 COLOUR$(2)="BLUE"
100 COLOUR$(3)="RED"
110 COLOUR$(4)="WHITE"
120 SIZE$(0)="EXTRA SMALL"
130 SIZE$(1)="SMALL"
140 SIZE$(2)="MEDIUM"
150 SIZE$(3)="LARGE"
160 SIZE$(4)="EXTRA LARGE"
170 INPUT"Select Type (0-4): ", A%
180 INPUT"Select Colour (0-4): ", B%
190 INPUT"Select Size (0-4): ", C%
200 PRINT TYPE$(A%)+", "+COLOUR$(B%)+", "+SIZE$(C%)
RUN

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 57

Chapter 6 File System

SORT
The SORT statement is used to sort a one-dimensional array in
ascending or descending order according the character's ASCII
values in the Roman 8 character set. You can also choose between
sorting the complete array or a specified interval. For string arrays,
you can select by which character position the sorting will be
performed.

This example shows how one numeric array is sorted in ascending
order and one string array is sorted in descending order according
to the fifth character in each element:
10 FOR Q%=0 TO 3
20 A$=STR$(Q%)
30 ARRAY%(Q%)=1000+Q%:ARRAY$(Q%)="No. "+A$
40 NEXT Q%
50 SORT ARRAY%,0,3,1
60 SORT ARRAY$,0,3,-5
70 FOR I%=0 TO 3
80 PRINT ARRAY%(I%), ARRAY$(I%)
90 NEXT I%
RUN

yields:
1000 No. 3
1001 No. 2
1002 No. 1
1003 No. 0

SPLIT
The SPLIT function is used to split a string expression into
elements in an array and to return the number of elements. A
specified character indicates where the string will be split.

In this example a string expression is divided into six parts by the
separator character “/” (ASCII 47 dec.) and arranged in a six
element array:
10 A$="ONE/TWO/THREE/FOUR/FIVE/SIX"
20 X$="ARRAY$"
30 DIM ARRAY$(6)
40 B%=SPLIT(A$,X$,47)
50 FOR C%=0 TO (B%-1)
60 PRINT ARRAY$(C%)
70 NEXT
RUN

yields:
ONE
TWO
THREE
FOUR
FIVE
SIX

6.10 Arrays, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 58

Chapter 6 File System

Note!
Do not confuse CSUM with CHECKSUM,
see chapter 6.9.

CSUM
The checksum for string arrays can be calculated according to one
of two different algorithms (LRC or DRC) and returned by means
of the CSUM statement.

In this example, the checksum of a string array is calculated
according both to the LRC (Logitudinal Redundancy Check) and
the DRC (Diagonal Redundancy Check) algorithms:
10 FOR Q%=0 TO 3
20 A$=STR$(Q%)
30 ARRAY$(Q%)="Element No. "+A$
40 NEXT
50 CSUM 1,ARRAY$,B%:PRINT "LRC checksum: ";B%
60 CSUM 2,ARRAY$,C%:PRINT "DRC checksum: ";C%
RUN

yields:
LRC checksum: 0
DRC checksum: 197

6.10 Arrays, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 59

Chapter 7 Input to UBI Fingerprint

7.1 Standard I/O
Channel

7.2 Input from Host
(Std IN Channel only)

The standard IN and standard OUT channels are the default
channels for input to the printer or output from the printer respec-
tively (in both cases "uart1:" by default). In most instructions, you
can override the standard IN or OUT channel by specifying another
channel. Usually, the same channel is used for both input and
output, but different channels can be specified.

SETSTDIO
You can appoint any of the following communication channels as
standard IN and/or standard OUT channel by means of the
SETSTDIO statement:

Standard IN channel Standard OUT channel
0 = "console:"1 0 = "console:"1

1 = "uart1:" (default) 1 = "uart1:" (default)
2 = "uart2:" 2 = "uart2:"
4 = "centronics:"2

1/. Do not select "console:" as both std in and out channel, since it
would only make characters entered on the printer's key-board
appear in the display.
2/. The parallel communication channel "centronics:" can only be
used for input (one-way communication only).

The std IN channel is used for sending instructions and data from
the host to the printer in order to control the printer in the immediate
mode, to write programs in the programming mode, to download
program files and to transmit input data.

Some instructions receives data on the std IN channel only:
INKEY$ Reads the 1:st character in the receive

buffer.
INPUT Receives input data during execution of a

program.
LINE INPUT Assigns an entire line to a string variable.

The following instructions are used to receive input from any
communication channel (incl. the std IN channel). The same
instructions are also used to read sequential files, see chapter 7.4:
OPEN Opens a channel for sequential INPUT.
INPUT# Receives input data during execution of a

program on the specified channel.
INPUT$ Reads a string of data from the specified

channel.
LINE INPUT# Assigns an entire line from the specified

channel to a string variable.
CLOSE Closes the channel.

7.3 Input from Host
(Any Channel)

7. Input to UBI Fingerprint

Chapter 7

☞ Output from UBI Fingerprint
See:
• Chapter 8

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 60

Chapter 7 Input to UBI Fingerprint

7.4 Input from a
Sequential File

Refer to chapter 7.3 for a summary of instructions used for reading
sequential files.

OPEN
Before any data can be read from a sequential file (or a communi-
cation channel other than the std IN channel), it must be OPENed
for INPUT and assigned a number, which is used when referred to
in other instructions. The number mark (#) is optional. Up to 10 files
and devices can be open at the same time.

Example: The file "ADDRESSES" is opened for input as number 1:
OPEN "ADDRESSES" FOR INPUT AS #1

After a file or device has been OPENed for INPUT, you can use the
following instructions for reading the data stored in it:

INPUT#
Reads a string of data to a variable. Commas can be used to assign
portions of the input to different variables. When reading from a
sequential file, the records can be read one after the other by
repeated INPUT# statements. The records are separated by com-
mas in the string. Once a record has been read, it cannot be read
again until the file has been CLOSEd and then OPENed again.

Example (reads six records in a file and places the data into six
string variables):
10 OPEN "QFILE" FOR OUTPUT AS #1
20 PRINT #1, "Record A","a","b","c"
30 PRINT #1, "Record B",1,2,3
40 PRINT #1, "Record C","x";"y";"z"
50 PRINT #1, "Record D,Record E,Record F"
60 CLOSE #1
70 OPEN "QFILE" FOR INPUT AS #1
80 INPUT #1, A$
90 INPUT #1, B$
100 INPUT #1, C$
110 INPUT #1, D$,E$,F$
120 PRINT A$
130 PRINT B$
140 PRINT C$
150 PRINT D$
160 PRINT E$
170 PRINT F$
180 CLOSE #1
RUN

yields:
Record A a b c
Record B 1 2 3
Record C xyz
Record D
Record E
Record F

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 61

Chapter 7 Input to UBI Fingerprint

7.4 Input from a
Sequential File,
cont'd.

INPUT$
Reads a specified number of characters from the specified sequen-
tial file or channel. (If no file or channel is specified, the data on the
standard IN channel will be read). The execution is held up waiting
for the specified number of characters to be received. If a file does
not contain as many characters as specified in the INPUT$ state-
ment, the execution will be resumed as soon as all available
characters in the file have been received.

Sequential files are read from the start and once a number of
characters have been read, they cannot be read again until the file
is CLOSEd and OPENed again. Subsequent INPUT$ statements
will start with the first of the remaining available characters.

Example (reads portions of characters from a file OPENed as #1):
10 OPEN "QFILE" FOR OUTPUT AS #1
20 PRINT #1, "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 CLOSE #1
40 OPEN "QFILE" FOR INPUT AS #1
50 A$=INPUT$(10,1)
60 B$=INPUT$(5,1)
70 C$=INPUT$(100,1)
80 PRINT "Record 1:",A$
90 PRINT "Record 2:",B$
100 PRINT "Record 3:",C$
110 CLOSE #1
RUN

yields:
Record1: ABCDEFGHIJ
Record2: KLMNO
Record3: PQRTSUVWXYZ

LINE INPUT#
Works similar to INPUT#, but reads an entire line including all
punctuation marks to a string variable instead of reading just one
record. Note that commas inside a string will be regarded as
punctuation marks and will not divide the string into records
(compare with INPUT#).

Example (reads a complete line in a file and places the data into a
single string variable):
10 OPEN "QFILE" FOR OUTPUT AS #1
20 PRINT #1, "Record A,Record B,Record C"
30 CLOSE #1
40 OPEN "QFILE" FOR INPUT AS #1
50 LINE INPUT #1, A$
60 PRINT A$
70 CLOSE #1
RUN

yields:
Record A,Record B,Record C

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 62

Chapter 7 Input to UBI Fingerprint

7.4 Input from a
Sequential File,
cont'd.

CLOSE
When a file is no longer used, it can be closed by means of a CLOSE
statement containing the same reference number as the correspond-
ing OPEN statement. An END statement also closes all open files.

A few instructions facilitate the use of files for sequential input:

EOF
The EOF function can connection with the statements INPUT#,
LINE INPUT# and INPUT$ to avoid the error condition “Input
past end”. When the EOF function encounters the end of a file, it
returns the value -1 (TRUE). If not, it returns the value 0 (FALSE).

Example:
10 DIM A%(10)
20 OPEN "DATA" FOR OUTPUT AS #1
30 FOR I%=1 TO 10
40 PRINT #1, I%*1123
50 NEXT I%
60 CLOSE #1
70 OPEN "DATA" FOR INPUT AS #2
80 I%=0
90 WHILE NOT EOF(2)
100 INPUT #2, A%(I%):PRINT A%(I%)
110 I%=1+1:WEND
120 IF EOF(2) THEN PRINT "End of File"
RUN

LOC (Location)
The LOC function returns the number of 128-byte blocks, that have
been read or written since the file was OPENed.

This example closes the file "ADDRESSES" when record No. 100
has been read from the file:
10 OPEN "ADDRESSES" FOR INPUT AS #1
.....
.....
.....
200 IF LOC(1)=100 THEN CLOSE #1
.....
.....

LOF (Length-of-File)
The LOF function returns the length in bytes of an OPENed file.

The example illustrates how the length of the file "Pricelist" is
returned:
10 OPEN "PRICELIST" AS #5
20 PRINT LOF(5)
.....
.....

☞ Relational Operators
Also see:
• Chapter 4.9

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 63

Chapter 7 Input to UBI Fingerprint

7.5 Input from a
Random File

The following instructions are used in connection with input from
random files:
OPEN Creates and/or opens a file for RANDOM

access and optionally specifies the record
length in bytes.

FIELD Creates a random buffer, divides it into
fields and assigns a variable to each field.

GET Reads a record from the buffer to the file.
CLOSE Closes an OPENed file.
LOC Returns the number of the last record read

by the use of a GET statements in the
specified file.

LOF Returns the length in bytes of the speci-
fied file.

OPEN
To read the data stored in a random file, you must OPEN it.

The example in this chapter uses the random file created in chapter
8.4, which can be graphically illustrated like this:

10 OPEN "ZFILE" AS #1 LEN=14

The appending LEN=14 refers to the length of each record which
is 14 bytes (4 + 4 + 6). Do not confuse the LEN parameter in the
OPEN statement with the LEN function, see chapter 9.2.

FIELD
Then enter the same field definitions as when the data was put into
the file:
20 FIELD#1, 4 AS F1$, 4 AS F2$, 6 AS F3$

GET
Use a GET statement to copy the desired record from the file. Note
that you can select whatever record you want, as opposed to
sequential files, where you reads the records one after the other. In
this case, we will copy record No. 1 (compare with the illustration
above).
30 GET #1,1

If you like, you can copy data from other records in the same file by
issuing additional GET statements with references to the records in
question.

Now you can use the variables assigned to the fields in the record
by means of the FIELD statement to handle the data. Possible
numeric expressions converted to string format before being put
into the record can now be converted back to numeric format using
VAL functions. In our example, we will simply print the data on the
screen:
40 PRINT F1$,F2$,F3$

☞ VAL function
Also see:
• Chapter 9.2

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 64

Chapter 7 Input to UBI Fingerprint

7.5 Input from a
Random File,
cont'd.

CLOSE
Finally, close the file and execute:
50 CLOSE #1
RUN

yields:
ABC DEF 123456

Two instructions facilitate the use of random files:

LOC (Location)
The LOC function returns the number of the last record read by the
use of GET statement.

This example closes the file "ADDRESSES" when record No. 100
has been read from the file:
10 OPEN "ADDRESSES" AS #1
.....
.....
.....
200 IF LOC(1)=100 THEN CLOSE #1
.....
.....

LOF (Length-of-File)
The LOF function returns the length in bytes of an OPENed file.

The example illustrates how the length of the file "Pricelist" is
returned:
10 OPEN "PRICELIST" AS #5
20 PRINT LOF(5)
. . . .
. . . .

All UBI Fingerprint 7.xx-compatible EasyCoder printers are pro-
vided with a built-in keyboard containing a set of numeric keys
supplemented with a number of function keys. There are also
separate alphanumeric keyboards available as options1.

Note that input from the printer's keyboard excludes the use of ON
KEY...GOSUB statements (see chapter 5.8) and vice versa.

The following instructions are used in connection with input from
the printer's keyboard:
OPEN Opens the device "console:" for sequen-

tial INPUT.
INPUT# Reads a string of data to a variable.
INPUT$ Reads a limited number of characters to a

variable.
LINE INPUT# Reads an entire line to a variable
CLOSE Closes the device.

7.6 Input from
Printer's
Keyboard

1/. Input from an external alphanumeric
keyboard is a case of ASCII input on a
communication channel, see chapter
7.1-3.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 65

Chapter 7 Input to UBI Fingerprint

The table below shows which ASCII characters the various keys
will produce in unshifted and shifted position. However, the
keyboard can be remapped (see later in this chapter).

Default ASCII decimal values
Key Unshifted Shifted Notes
Shift – – Adds 128 to the value of an unshifted key
F1 1 129
F2 2 130
F3 3 131
F4 4 132
F5 5 133
C 8 136

Enter 13 141 Unshifted Enter = Carriage Return
Feed 28 156
Setup 29 157
Pause 30 158 Shift+Pause is by default Break from keyboard
Print 31 159

. 46 174
0 48 176
1 49 177
2 50 178
3 51 179
4 52 180
5 53 181
6 54 182
7 55 183
8 56 184
9 57 185

The printable characters actually generated by the respective ASCII
value depend on the selected character set (NASC/NASCD) and
possible MAP statements, see chapter 9.1.

In case of INPUT# and LINE INPUT# , the input will not be
accepted until a carriage return (<Enter>) is issued.

This example demonstrates how the printable character and decimal
ASCII value of various keys on the printer's keyboard can be printed
to the screen of the host. You can break the program by holding
down the <Shift> key and pressing <Pause>.
10 PRINT "Character", "ASCII value"
20 OPEN "console:" FOR INPUT AS 1
30 A$=INPUT$(1,1)
40 B%=ASC(A$)
50 PRINT A$, B%
60 GOTO 30
70 CLOSE 1
RUN

7.6 Input from
Printer's
Keyboard, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 66

Chapter 7 Input to UBI Fingerprint

7.7 Communication
Control

The following instruction are used to control the communication
between the printer and the host or other connected devices:
BUSY/READY Transmits a busy or ready signal on the

specified communication channel.
ON LINE/OFF LINE Controls the SELECT signal on the paral-

lel communication channel ("centronics:").
VERBON/VERBOFF Turns printer's verbosity on/off.
SYSVAR(18) Selects the printer's verbosity level.

BUSY/READY
By means of these two statements, you can let the program
execution turn a selected communication channel on or off. There
is a difference between serial and parallel communication:
• Serial communication:

The type of busy/ready signal is decided in the Setup Mode (Ser-
Com; Flowcontrol), see the Installation & Operation manual.
- When a BUSY statement is executed, the printer sends a busy

signal , e.g. XOFF or RTS/CTS low.
- When a READY statement is executed, the printer sends a ready

signal , e.g. XON or RTS/CTS high.
• Parallel communication:

The parallel Centronics communication channel uses the BUSY/
READY statements to control the PE (paper end) signal on pin 12:
- BUSY = PE high
- READY = PE low
The status of the PE signal can be read by a PRSTAT statement,
e.g.:
IF (PRSTAT AND 4) GOTO.....ELSE GOTO.....

Note that issuing a READY statement is no guarantee that the printer
will receive data, since there may be other conditions that hold up
the reception, e.g. a full receive buffer.

ON LINE/OFF LINE
These two statements is only used for the parallel Centronics
communication channel and controls the SELECT signal (pin 13 on
the parallel interface board):
- ON LINE 4 sets the SELECT signal high (default)
- OFF LINE 4 sets the SELECT signal low

☞ Communication
Also see:
• Technical Manual, Setup Parameters

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 67

Chapter 7 Input to UBI Fingerprint

7.7 Communication
Control, cont'd.

VERBON/VERBOFF
These two statements control the printer's verbosity, i.e. the re-
sponse from the printer on the standard OUT channel to instructions
received on the standard IN channel. Both can be substituted by
SYSVAR (18) , see below.

By default, verbosity is on (VERBON). The verbosity level is
controlled by the system variable SYSVAR(18).

All responses will be turned suppressed when a VERBOFF state-
ment is issued. However, VERBOFF does not suppress question
marks and prompts displayed as a result of e.g. an INPUT state-
ment. Instructions like DEVICES, FILES , FONTS, IMAGES,
LIST and PRINT will also work normally.

SYSVAR
The system variable SYSVAR is used for many purposes, one of
which is to control the verbosity level.

The verbosity level can be selected or read by specifying bits in
SYSVAR(18):
All levels enabled -1
No verbosity 0
Echo received characters 1
"Ok" after correct command lines 2
Echo INPUT characters from communication port 4
Error after failed lines 8

The levels can be combined, so e.g. 3 means both “Echo received
characters” and “Ok after correct command line”.

By default, all levels are enabled, i.e. SYSVAR(18) = -1 .

VERBON statement enables all levels, i.e. SYSVAR(18) = -1 .

VERBOFF statement disables all levels, i.e. SYSVAR(18) = 0 .

When the printer receives a character, e.g. from the keyboard of the
host, by default the same character is echoed back on the standard
OUT channel, i.e. usually to the screen of the host. When an
instruction has been checked for syntax errors and accepted, the
printer returns “Ok”. Else an error message is returned.

This example demonstrates how the printer is set to only return
“Ok” after correct lines (2) or error messages after failed lines (8):
SYSVAR(18) = 10

☞ Standard IN/OUT Channel
Also see:
• Chapter 7.1

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 68

Chapter 7 Input to UBI Fingerprint

7.8 Background
Communication

Background communication means that the printer receives data on
an IN channel while the program runs in a loop. The data are stored
in a buffer, that can be emptied at an appropriate moment by the
running program, which then can use the data. Note that back-
ground communication buffers are not the same as the receive
buffers. Any input received on a communication channel is first
stored in the channel's receive buffer, awaiting being processed.
After processing, the data may be stored in the background commu-
nication buffer.

The following instructions are used in connection with background
communication:
COMSET Decides how the background reception

will work in regard of:
- Communication channel.
- Start character(s) of message string.
- End character(s) of message string.
- Characters to be ignored.
- Attention string that interrupt reception.
- Maximum number of characters to be

received.
ON COMSET GOSUB Branches the program execution to a sub-

routine when background reception on a
specified channel is interrupted.

COMSET ON Empties the buffer and turns on back-
ground reception on the specified chan-
nel.

COMSET OFF Turns off background reception on the
specified channel and empties the buffer.

COM ERROR ON Enables error handling on a specified
channel.

COM ERROR OFF Disables error handling on a specified
channel (default).

COMSTAT Reads the status of the buffer of a speci-
fied channel.

COMBUF$ Reads data in the buffer of a specified
channel.

To set up the printer for background communication, proceed as
follows:
• Start by enabling the error handling for background communi-

cation using a COM ERROR ON statement and specifying the
communication channel you intend to use:
0 = "console:"
1 = "uart1:"
2 = "uart2:"
4 = "centronics:"

☞ Memory and Buffers
Also see:
• Chapter 6.1

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 69

Chapter 7 Input to UBI Fingerprint

7.8 Background
Communication,
cont'd.

• It may be useful to create a few messages indicating what have
caused the interruption.

Example:
Error handling is enabled for communication channel "uart1:"
and messages will be printed to the standard out channel for all
conditions that can be detected by a COMSTAT function.
10 COM ERROR 1 ON
20 A$="Max. number of characters"
30 B$="End char. received"
40 C$="Communication error"
50 D$="Attention string received"

• Continue with a COMSET statement specifying:
- Which communication channel will be used (0–4, see above).
- Which character, or string of characters, will be used to tell the

printer to start receiving data?
- Which character, or string of characters, will be used to tell the

printer to stop receiving data?
- Which character or characters should be ignored, i.e. filtered

out from the received data?
- Which character, or string of characters, should be used as an

attention string, i.e. to interrupt the reception.

Start, stop, ignore and attention characters are selected accord-
ing to the protocol of the computing device that transmits the
data. Non printable characters, e.g. STX (Start of Text; ASCII 02
dec.) and ETX (End of Text; ASCII 03 dec.) can be selected by
means of a CHR$ function. To specify no character, use an empty
string, i.e. "".

- How many characters should be received before the transmis-
sion is interrupted? This parameter also decides the size of the
buffer, i.e. how much of the temporary memory will be
allocated.

Example (designed to make the example easy to run rather than
to illustrate a realistic application):
Background reception on the serial channel "uart1:".
Start character: A
End character: CHR$ (90) i.e. the character “Z”.
Characters to be ignored: #
Attention string: BREAK
Max. number of characters in buffer: 20
60 COMSET 1,"A",CHR$(90),"#","BREAK",20

☞ CHR$ Function
Also see:
• Chapter 9.2

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 70

Chapter 7 Input to UBI Fingerprint

• Decide what will happen, when the reception is interrupted, by
specifying a subroutine to which the execution will branch,
using anON COMSET GOSUBstatement. Interruption will oc-
cur when any of the following conditions is fulfilled:
- an end character is received.
- an attention string is received.
- the maximum number of characters have been received.

Example:
When the reception of data on communication channel 1
("uart1:") is interrupted, the execution will branch to a subrou-
tine starting on line number 1000.
70 ON COMSET 1 GOSUB 1000

• After returning from the subroutine, use aCOMSETONstatement
to empty the buffer and turn on background reception again. e.g.:
80 COMSET 1 ON

• When the reception has been interrupted, it is time to see what
the buffer contains. You can read the content of the buffer, e.g.
to a string variable, using a COMBUF$ function:
1000 QDATA$=COMBUF$(1)

• The COMSTAT function can be used to detect what has caused
the interruption. Use the logical operator AND to detect the
following four reason of interruption as specified by COMSET:
- Max. number of characters received (2).
- End character received (4).
- Attention string received (8).
- Communication error (32).

Example:
The various cases of interruption makes different messages to be
printed to the standard OUT channel.
1010 IF COMSTAT(1) AND 2 THEN PRINT A$
1020 IF COMSTAT(1) AND 4 THEN PRINT B$
1030 IF COMSTAT(1) AND 8 THEN PRINT C$
1040 IF COMSTAT(1) AND 32 THEN PRINT D$

• If you want to temporarily turn off background reception during
some part of the program execution, you can issue a COMSET
OFF statement and then turn off the background reception again
using a newCOMSETONstatement.

Note that anyCOMSET ON/OFFstatement empties the buffer
and the content will be lost if you do not read it first, using a
COMBUF$ function.

7.8 Background
Communication,
cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 71

Chapter 7 Input to UBI Fingerprint

• After adding a few lines to print the content of the buffer (line
1050) and to create a loop that waits from input from the host
(line 90), the entire example will look like this. You can run the
example by typing RUN and pressing <Enter> on the keyboard
of the host. Then enter various characters and see what happens,
comparing with the start character, stop character, ignore char-
acter, attention string, and max. number of characters param-
eters in the COMSET statement.
NEW
10 COM ERROR 1 ON
20 A$="Max. number of char. received"
30 B$="End char. received"
40 C$="Attn. string received"
50 D$="Communication error"
60 COMSET 1, "A",CHR$(90),"#","BREAK",20
70 ON COMSET 1 GOSUB 1000
80 COMSET 1 ON
90 IF QDATA$="" THEN GOTO 90
100 END
1000 QDATA$=COMBUF$(1)
1010 IF COMSTAT(1) AND 2 THEN PRINT A$
1020 IF COMSTAT(1) AND 4 THEN PRINT B$
1030 IF COMSTAT(1) AND 8 THEN PRINT C$
1040 IF COMSTAT(1) AND 32 THEN PRINT D$
1050 PRINT QDATA$
1060 RETURN
RUN

Two instructions facilitate the use of background communication:

LOC (Locate)
The LOC function returns the status of the receive or transmitter
buffers in an OPENed communication channel:
- If the channel is OPENed for INPUT, the remaining number of

characters (bytes) to be read from the receive buffer is returned.
- If the channel is OPENed for OUTPUT, the remaining free space

(bytes) in the transmitter buffer is returned.

The number of bytes includes characters that will be MAPped as
NULL.

This example reads the number of bytes which remains to be
received from the receiver buffer of "uart2:":
10 OPEN "uart2:" FOR INPUT AS #2
20 A%=LOC(2)
30 PRINT A%
...
...

7.8 Background
Communication,
cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 72

Chapter 7 Input to UBI Fingerprint

LOF (Length-of-File)
The LOF function returns the status of the buffers in an OPENed
communication channel:
- If a channel is OPENed for INPUT, the remaining free space

(bytes) in the receive buffer is returned.
- If a channel is OPENed for OUTPUT, the remaining number of

characters to be transmitted from the transmitter buffer is
returned.

The example shows how the number of free bytes in the receive
buffer of communication channel "uart2:" is calculated:
10 OPEN "uart2:" FOR INPUT AS #2
20 A%=LOF(2)
30 PRINT A%
...
...
80 COMSET 1 ON
90 IF QDATA$="" THEN GOTO 90
100 END
1000 QDATA$=COMBUF$(1)
1010 IF COMSTAT(1) AND 2 THEN PRINT A$
1020 IF COMSTAT(1) AND 4 THEN PRINT B$
1030 IF COMSTAT(1) AND 8 THEN PRINT C$
1040 IF COMSTAT(1) AND 32 THEN PRINT D$
1050 PRINT QDATA$
1060 RETURN
RUN

As an option, the printers can be fitted with interfaces board that
provides either RS 422 non-isolated or RS 422 isolated on "uart2:".

In neither of these protocols, there are any lines for hardware
handshake (RTS/CTS).

RS 422 is a point-to-point four-line screened cable connection
between a host computer and a printer, or between two printers.
Two lines transmit data and the other two receive data. No hardware
handshake can be used (4 lines only), but XON/XOFF or ENQ/
ACK can be used if so desired.

• Fit straps and driver circuits according to the installation
instructions for the interface board.

• Set the printer's flowcontrol setup to:
RTS/CTS: Always Disable
ENQ/ACK: Enable or Disable
XON/XOFF, Data to host: Always Enable
XON/XOFF, Data to host: Enable or Disable

• Select "uart2:" as standard I/O channel, e.g. SETSTDIO 2,2

7.8 Background
Communication,
cont'd.

7.9 RS 422
Communication

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 73

Chapter 7 Input to UBI Fingerprint

Industrial Interface
The UBI Fingerprint firmware not only allows you to control the
printer, but various types of external equipment, like conveyor
belts, gates, turnstiles, control lamps etc. can be controlled as well
by the program execution. Likewise, the status of various external
devices can be used to control both the printer and other equipment.
The computing capacity of the UBI Fingerprint printer can thus be
used to independently control workstations without the require-
ment of an on-line connection to a host computer.

What makes this possible is the Industrial Interface Board, which
is available as an option. The board contains a female DB-44
connector with 8 digital IN ports, 8 digital OUT ports and 4 OUT
ports with relays.

There are two instruction solely used in connection with the
Industrial Interface Board:

PORTOUT ON/OFF
This statement sets one of the four relays OUT ports or one of the
digital OUT ports to either on or off.

PORTIN
This function returns the status of a specified port.

Refer to the installation instructions of the Industrial Interface
Board for more details.

7.10 External
Equipment

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 74

Chapter 8 Output from UBI Fingerprint

8. Output from UBI Fingerprint
8.1 Output to Std

OUT Channel

The std. OUT channel is used for returning the printer's responses
to instructions received from the host. That is why the same device
usually is selected both standard IN and OUT channel (see
SETSTDIO statement in chapter 7.1). By default, "uart1:" is std
OUT channel.

After every instruction received on the std IN channel, the printer
will either return “Ok” or an error message (e.g. “Feature not
implemented” or “Syntax Error”) on the std. OUT channel. If the
std OUT channel is connected to the host computer, this message
will appear on the screen.

The response can be turned off/on by means of VERBOFF/VERBON
statements, the verbosity level can be selected by SYSVAR(18),
and the type of error message can be selected by SYSVAR(19).

Some instructions return data on the std OUT channel only:
DEVICES Lists all devices (also see chapter 4.10).
FILES Lists all files in the current directory or

another specified directory (also see chap-
ter 6.2).

FONTS Lists all fonts in the printer's entire memory
(also see chapter 12.4).

IMAGES Lists all images in the printer's entire
memory (also see chapter 14.4).

LIST Lists the current program in its entity or
within a specified range of lines (also see
chapter 5.4.

PRINT Prints the content of numeric or string
expressions and the result of functions
and calculations (see below).

PRINTONE Prints characters entered as ASCII values
(see below).

PRINT (or ?)
The PRINT statement prints a line on the std OUT channel, i.e.
usually the screen of the host. The PRINT statement can be
followed by one or several expressions (string and/or numeric).

If the PRINT statement contains several expressions, these must be
separated by either commas (,) semicolons (;), or plus signs (+, only
between string expressions):
• A comma places the expression that follows at the start of next

tabulating zone (each zone is 10 characters long).

Example:
PRINT "Price","$10" yields:
Price $10

Chapter 8

☞ Verbosity
Also see:
• Chapter 7.7

☞ Standard Error-Handling
Also see:
• Chapter 16.1

☞ Input to UBI Fingerprint
See:
• Chapter 7

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 75

Chapter 8 Output from UBI Fingerprint

PRINT (or ?), cont'd.
• A semicolon places the expression that follows immediately

adjacent to the preceding expression.

Example:
PRINT "Price_";"$10" yields:
Price_$10

• A plus sign places the string expression that follows immedi-
ately adjacent to the preceding string expression (plus signs can
only be used between two string expressions)'

Example:
PRINT "Price_"+"$10" yields:
Price_$1

• Each line is terminated by a carriage return, as to make the next
PRINT statement being started on a new line. However, if a
PRINT statement is appended by a semicolon, the carriage
return will be suppressed and next PRINT statement will be
printed adjacently to the preceding one.

Example:
10 PRINT "Price_";"$10";
20 PRINT "_per_dozen"
RUN yields:
Price_$10_per_dozen

• A PRINT statement can also be used to return the result of a
calculation or a function.

Example:
PRINT 25+25:PRINT CHR$ (65) Yields:
50
A

• If the PRINT statement is not followed by any expression, a
blank line will be produced.

PRINTONE
The PRINTONE statement prints the alphanumeric representation
of one or several characters specified by their respective ASCII
values (according to the currently selected character set, see NASC
statement in chapter 9.1) to the standard OUT channel.

The PRINTONE statement is useful e.g. when a certain character
cannot be produced from the keyboard of the host.

PRINTONE is very similar to the PRINT statement and follows the
same rules regarding separating characters, i.e. commas and semi-
colons).

Example:
PRINTONE 80;114;105;99;101,36;32;49;48 yields:
Price $_10

8.1 Output to Std
OUT Channel,
cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 76

Chapter 8 Output from UBI Fingerprint

8.2 Redirecting
Output from
Std Out Channel
to File

As described in chapter 8.1, by default some instructions return data
on the standard OUT channel. However, it is possible to redirect
such output to a file using theREDIRECTOUTstatement, as de-
scribed below.

REDIRECT OUT
This statement can be issued with or without an appending string
expression:
• REDIRECT OUT <sexp>

The string expression specifies the name of a sequential file that
will be created and in which the output will be stored. Obviously,
in this case no data will be echoed back to the host.

• REDIRECT OUT
When no file name appends the statement, the output will be
directed back to the std. OUT channel.

Example:
The output is redirected to the file "IMAGES.DAT". Then the
images in the printer's memory is read to the file after which the
output is redirected back to the standard OUT channel. Then the file
is copied to the communication channel "uart1:" and printed on the
screen of the host.
10 REDIRECT OUT "IMAGES.DAT"
20 IMAGES
30 REDIRECT OUT
RUN
Ok

COPY "IMAGES.DAT","uart1:"
yields e.g.:

CHESS2X2.1 CHESS4X4.1
DIAMONDS.1 UBI.1
UBI.2 UBI010.1
UBI010.2

1543700 bytes free 307200 bytes used
Ok

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 77

Chapter 8 Output from UBI Fingerprint

8.3 Output and
Append to
Sequential Files

The following instructions are used in connection with output to
sequential files:
OPEN Creates and/or opens a file for sequential

OUTPUTor APPENDand optionally speci-
fies the record length in bytes.

PRINT# Prints data entered as numeric or string
expressions to the specified file.

PRINTONE# Prints data entered as ASCII values to the
specified file.

CLOSE Closes an OPENed file.
LOC Returns the number of 128-byte blocks,

that have been written since the file was
OPENed.

LOF Returns the length in bytes of the speci-
fied file.

To print data to a sequential file, proceed as follows:

OPEN
Before any data can be written to a sequential file, it must be opened.
Use the OPEN statement to specify the name of the file and the mode
of access (OUTPUT or APPEND).
• OUTPUT means that existing data will be replaced.
• APPEND means that new data will be appended to existing data.

In the OPEN statement you must also assign a number to the
OPENed file, which is used when the file is referred to in other
instructions. The number mark (#) is optional. Optionally, the
length of the record can also be changed (default 128 bytes). Up to
10 files and devices can be open at the same time.

Examples:
The file "ADDRESSES" is opened for output and given the reference
number 1:
OPEN "ADDRESSES FOR OUTPUT AS #1

The file "PRICELIST" is opened for append and is given the
reference number 5:
OPEN "PRICELIST" FOR APPEND AS #2

After a file or device has been OPENed for OUTPUT or APPEND,
you can use the following instructions for writing data to it:

PRINT#
Prints data entered as string or numeric expressions to a sequential
file. Expressions can be separated by commas or semicolons:
• Commas prints the expression in separate zones.
• Semicolons prints expressions adjacently.

There are two ways to divide the file into records:
• Each PRINT# statement creates a new record (see line 20-40

in the example below).
• Commas inside a string divides the string into records (see line

50 in the example below).

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 78

Chapter 8 Output from UBI Fingerprint

8.3 Output and
Append to
Sequential Files,
cont'd.

PRINT#, cont'd.
Example:
10 OPEN "QFILE" FOR OUTPUT AS #1
20 PRINT #1, "Record A", "a", "b", "c"
30 PRINT #1, "Record B", 1, 2, 3
40 PRINT #1, "Record C", "x"; "y"; "z"
50 PRINT #1, "Record D,Record E,Record F"

PRINTONE#
Prints characters entered as decimal ASCII values according to the
selected character set to the selected file or device. This statement
is e.g. useful when the host cannot produce certain characters. Apart
from using ASCII values instead of string or numeric expressions,
the PRINTONE# works in the same way as the PRINT# statement.

Example (prints two records ”Hello” and “Goodbye” to "file1"):
10 OPEN "file1" FOR OUTPUT AS 55
20 PRINTONE#55,72;101;108;108;111
30 PRINTONE#55,71;111;111;100;98;121;101

CLOSE
After having written all the data you need to the file, CLOSE it using
the same reference number as when it was OPENed.

Example:
10 OPEN "file1" FOR OUTPUT AS 55
20 PRINTONE#55,72;101;108;108;111
30 PRINTONE#55,71;111;111;100;98;121;101
40 CLOSE 55

LOC (Location)
The LOC function returns the number of 128-byte blocks, that have
been written since the file was OPENed.

This example closes the file "ADDRESSES" when record No. 100
has been read from the file:
10 OPEN "ADDRESSES" FOR OUTPUT AS #1
.....
.....
200 IF LOC(1)=100 THEN CLOSE #1
.....

LOF (Length-of-File)
The LOF function returns the length in bytes of an OPENed file.

The example illustrates how the length of the file "Pricelist" is
returned:
10 OPEN "PRICELIST" FOR OUTPUT AS #5
20 PRINT LOF(5)
.....
.....

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 79

Chapter 8 Output from UBI Fingerprint

The following instructions are used in connection with output to
random files:
OPEN Creates and/or opens a file for RANDOM

access and optionally specifies the record
length in bytes.

FIELD Creates a random buffer, divides it into
fields and assigns a variable to each field.

LSET/RSET Places data left- or right-justified into the
buffer.

PUT Writes a record from the buffer to the file.
CLOSE Closes an OPENed file.
LOC Returns the number of the last record

written by the use of a PUT statement in
the specified file.

LOF Returns the length in bytes of the speci-
fied file.

To write data to a random file, proceed as follows:

OPEN
Start by OPENing a file for random input/output. Since random
access is selected by default, the mode of access can be omitted from
the statement, e.g.:
10 OPEN "ZFILE" AS #1

Optionally, the length of each record in the file can be specified in
number of bytes (default 128 bytes):
10 OPEN "ZFILE" AS #1 LEN=14

FIELD
Next action to take is to create a buffer by means of a FIELD
statement. The buffer is given a reference number and divided into
a number of fields with individual length in regard of number of
characters. To each field, a string variable is assigned.

The buffer specifies the format of each record in the file. The sum
of the length of the different fields in a record must not exceed the
record length specified in the OPEN statement.

In the example below, 4 bytes are allocated to field 1, 4 bytes to field
2 and 6 bytes to field 3. The fields are assigned to the string variables
A1$, A2$ and A3$ respectively.
20 FIELD#1, 4 AS F1$, 4 AS F2$, 6 AS F3$

Graphically illustrated, the record produced in the line above will
look like this:

The file can consist of many records, all with the same format. (To
produces files with different record lengths, the file must be
OPENed more than once and with different reference numbers).

8.4 Output to
Random Files

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 80

Chapter 8 Output from UBI Fingerprint

Now it is time to write some data to the file. Usually the data comes
from e.g. the host or from the printer's keyboard. In this example,
we will type the data directly on the host and assign the data to string
variables:
30 QDATA1$="ABC"
40 QDATA2$="DEF"
50 QDATA3$="12345678"

Note that only string variables can be used. Possible numeric
expressions must therefore be converted to strings by means of
STR$ functions.

LSET/RSET
There are two instructions for placing data into a random file buffer:
• LSET places the data left-justified.
• RSET places the data right-justified.

In other words, if the input data consist of less bytes that the field into
which it is placed, it will either be placed to the left (LSET) or to the
right (RSET).

If the length of the input data exceeds the size of the field, the data
will be truncated from the end in case of LSET, and from the start
in case of RSET.

60 LSET F1$=QDATA1$
70 RSET F2$=QDATA2$
80 LSET F3$=QDATA3$

Using the graphic illustration from previous page, the result is
meant to be like this:

Note that the first field is left-justified, the second field is right-
justified, and the third field is left-justified and truncated at the end
(digits 7 and 8 are omitted since the field is only six bytes long; if
the field had been right-justified, digits 1 and 2 had been omitted
instead).

PUT
Next step is to transfer the record to the file. For this purpose we use
the PUT statement. PUT is always followed by the number assigned
to the file when it was OPENed, and the number of the record in
which you want to place the data (1 or larger).

In our example, the file ZFILE was OPENed as #1 and we want to
place the data in the first record. Note that you can place data in
whatever record you like. The order is of no consequence.

90 PUT #1,1

8.4 Output to
Random Files,
cont'd.

☞ STR$ Function
Also see:
• Chapter 9.2

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 81

Chapter 8 Output from UBI Fingerprint

If you want, you can continue and place data into other records using
additional sets of LSET, RSET and PUT statements. Below is a
graphic example of a three-record file:

CLOSE
When you are finished, close the file:
100 CLOSE #1

Nothing will actually happen before you execute the program using
a RUN statement. Then the data will be placed into the fields and
records as specified by the program, e.g.:
10 OPEN "ZFILE" AS #1 LEN=14
20 FIELD#1, 4 AS F1$, 4 AS F2$, 6 AS F3$
30 QDATA1$="ABC"
40 QDATA2$="DEF"
50 QDATA3$="12345678"
60 LSET F1$=QDATA1$
70 RSET F2$=QDATA2$
80 LSET F3$=QDATA3$
90 PUT #1,1
100 CLOSE #1
RUN

LOC (Locate)
The LOC function returns the number of the last record read or
written by the use of GET or PUT statements respectively in an
OPENed file.

This example closes the file "ADDRESSES" when record No. 100
has been read from the file:
10 OPEN "ADDRESSES" AS #1
.....
.....
200 IF LOC(1)=100 THEN CLOSE #1
.....
.....

LOF (Length-of-File)
The LOF function returns the length in bytes of an OPENed file.

The example illustrates how the length of the file "Pricelist" is
returned:
10 OPEN "PRICELIST" AS #5
20 PRINT LOF(5)
.....
.....

8.4 Output to
Random Files,
cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 82

Chapter 8 Output from UBI Fingerprint

8.5 Output to
Communication
Channels

Output from a UBI Fingerprint program can be directed to any serial
communication channel OPENed for sequential OUTPUT follow-
ing the same principles as for output to files (see chapter 8.3).

Note that in this case, the parallel communication channel
"centronics:" cannot be used (one-way communication only).

The communication channels are specified by name as follows:
• "uart1:"
• "uart2:"

The following instructions are used in connection with output to a
communication channel:

OPEN Opens a serial communication channel
for sequential output.

PRINT# Prints data entered as numeric or string
expressions to the selected channel.

PRINTONE# Prints data entered as ASCII values to the
selected channel.

CLOSE Closes an OPENed channel.
LOC Returns the remaining number of free

bytes in the transmitter buffer of the se-
lected communication channel.

LOF Returns the remaining numbers of char-
acters to be transmitted from the transmit-
ter buffer is returned.

COPY Copies a file to a communication channel.

Example 1 (prints the records “Record 1” and “Record 2” to the
serial communication channel "uart2:"):
10 OPEN "uart2:" for OUTPUT AS #1
20 PRINT #1, "Record 1"
30 PRINTONE #1, 82;101;99;111;114;100;32;50
40 CLOSE #1

Example (prints the file "datafile" in a DOS-formatted memory
card to the serial communication channel "uart2:"):
COPY "card1:datafile","uart2:"

The only device, other than the serial communication channels, that
can be OPENed to receive output from a UBI Fingerprint program,
is the printer's LCD display ("console:"). This is explained in
chapter 15.2 together with other methods for controlling the dis-
play.

8.6 Output to
Display

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 83

Chapter 9 Data Handling

9. Data Handling
9.1 Preprocessing

Input Data
All input data to the printer come in binary form via the various
communication channels. Text files are transmitted in ASCII
format, which upon reception will be preprocessed by the printer's
software according to two instructions as to provide full compatibil-
ity between the printer and the host:
MAP Remaps the selected character set.
NASC Selects a single-byte character set
NASCD Selects a double-byte character set

A character received by the printer on a communication channel
will first be processed in regard of possible MAP statements. Then
the character will be checked for anyCOMSETor ON KEY...
GOSUBconditions. When a character is to be printed, it will be
processed into a bitmap pattern that makes up a certain character
according to the character set selected by means of a NASC or
NASCD statement.

MAP
The MAP statement is used to modify a character set or to filter out
undesired characters on a specified communication channel by
mapping them as Null (ASCII 0 dec).

If no character set meets your requirements completely (see NASC
and NASCD below), select the set that comes closest and modify it
using MAP statements. Do not map any characters to ASCII values
occupied by characters used in UBI Fingerprint instructions, e.g.
keywords, operators, %, $, #, and certain punctuation marks.
Mapped characters will be reset to normal at power-up or reboot.

Example:
You may want to use the German character set (49) and 7 bits
communication protocol. However, you need to print £ characters,
but have no need for the & character. Then remap the £ character
(ASCII 187 dec.) to the value of the & character (ASCII 38 dec.) .
Type a series of & characters on the keyboard of the host and finish
with a carriage return:
10 NASC 49
20 MAP 38,187
30 FONT "Swiss 721 BT"
40 PRPOS 100,100
50 INPUT "Enter character";A$
60 PRTXT A$
70 PRINTFEED
RUN
Enter character? (see note!)

Note! When using 7 bit communication, the printer cannot echo
back the correct character to the host if its ASCII value exceeds 127,
hence “;” characters will appear on the screen. Nevertheless, the
desired “£” characters will be printed on the label.

Chapter 9

☞ COMSET statement
Also see:
• Chapter 7.8

☞ ON KEY...GOSUB statement
Also see:
• Chapter 15.1

☞ Character Sets
Also see:
• UBI Fingerprint 7.xx Reference Manual
 for complete single-byte character set
 tables.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 84

Chapter 9 Data Handling

NASC
The NASC statement is used to select a single-byte character set that
decides how the various characters will be printed. This instruction
makes it possible to adapt the printer to various national standards.
By default, characters will be printed according to the Roman 8
character set.

Suppose you order the printer to print the character ASCII 124 dec.
(We will not concern ourselves with how your computer and its
keyboard are mapped. Refer to their respective manuals.) If you
check the character set tables at the end of the UBI Fingerprint 7.xx
Reference Manual, you will see that ASCII 124 will generate the
character “|” according to the Roman 8 character set, “ù” according
to the French character set and ñ according to the Spanish set etc.
The same applies to a number of special national characters,
whereas digits 0–9 and characters A–Z, a–z plus most punctuation
marks are the same in all sets. Select the set that best matches your
data equipment and printout requirements.

If none of the sets matches your requirements exactly, select the one
that comes closest. Then, you can make final corrections by means
of MAP statements, see above.

A NASC statement will have the following consequences:
• Text printing:

Text on labels etc. will be printed according to the selected
character set. However, instructions concerning the printable
label image, that already has been processed before the NASC
statement is executed, will not be affected. This implies that
labels may be multilingual.

• LCD display:
New messages in the display will be affected by a preceding
NASC statement. However, a message that is already displayed
will not be updated automatically. The display is able to show
most printable latin characters.

• Communication:
Data transmitted from the printer via any of the communication
channels will not be affected, as the data is defined by ASCII
values, not as alphanumeric characters. The active character set
of the receiving unit will decide the graphic presentation of the
input data, e.g. on the screen of the host.

• Bar code printing:
The pattern of the bars reflects the ASCII values of the input data
and is not affected by a NASC statement. The bar code inter-
pretation (i.e. the human readable characters below the bar
pattern) is affected by a NASC statement. However, the interpre-
tation of bar codes, that have been processed and are stored in the
print buffer, will not be affected.

This example selects the Italian character set:
NASC 39

9.1 Preprocessing
Input Data, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 85

Chapter 9 Data Handling

NASCD
The NASCD statement works similar to the NASC statement, but is
used for double-byte character sets, i.e. for such fonts that require
2 bytes to specify a character according to the Unicode standard.
This is for example the case with major Asian languages, such as
Chinese, Korean and Japanese.

When a double-byte character set has been selected, the firmware
will usually treat all characters from ASCII 161 dec. to ASCII 254
dec (ASCII A1 – FE hex) as the first part of a two-byte character.
Next character byte received will specify the second part. However,
the selected Unicode double-byte character set may specify some
other ASCII value as the breaking point between single and double
byte character sets.

There are various ways to produce double-byte characters from the
keyboard of the computer. By selecting the proper character set
using a NASCD statement, the typed-in ASCII values will be
translated to the corresponding Unicode values, so the desired
glyph will be printed.

Double-byte fonts and character set tables are available from UBI
on special request, usually in the form of font cards.

Example:
The text field in line 50 contains both single- and double-byte fonts.
The double-byte font and its character set are stored in a Font
Install Card. The program yields a printed text line that starts with
the Latin character A (ASCII 65 dec.) followed by the Chinese font
that corresponds to the address 161+162 dec. in the character set
“BIG5.NCD”.
10 NASC 46
20 FONT "Swiss 721 BT", 24, 10
30 NASCD "rom:BIG5.NCD"
40 FONTD "Chinese"
50 PRTXT CHR$(65);CHR$(161);CHR$(162)
60 PRINTFEED
RUN

9.1 Preprocessing
Input Data, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 86

Chapter 9 Data Handling

9.2 Input Data
Conversion

There are a number of instruction for converting data in numeric or
string expressions. You will find them used in many examples in
this volume. The instructions will only be described in short terms.
For full information, please refer to the UBI Fingerprint Reference
Manual.

ABS
The ABS function returns the absolute value of a numeric expres-
sion. Absolute value means that the value is either positive or zero.

Example:
PRINT ABS (10–15) yields:
5

ASC
The ASC function returns the decimal ASCII value of the first
character in a string expression.

Example:
PRINT ASC("HELLO") yields:
72

CHR$
The CHR$ function returns the readable character from a decimal
ASCII value. This function is useful when you cannot produce a
certain character from the keyboard of the host.

Example:
PRINT CHR$(72) yields:
H

INSTR
The INSTR function searches a string expression for a certain
character, or sequence of characters, and returns the position.

Example:
PRINT INSTR ("UBI","BI") yields:
2

LEFT$
The LEFT$ function returns a certain number of characters from the
left side of a string expression, i.e. from the start. The complemen-
tary instruction is RIGHT$.

Example:
PRINT LEFT$("UBI PRINTER",3) yields:
UBI

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 87

Chapter 9 Data Handling

9.2 Input Data
Conversion,
cont'd.

LEN
The LEN function returns the number of characters including space
characters in a string expression.

Example:
PRINT LEN ("UBI PRINTER") yields:
11

MID$
The MID$ function returns a part of a string expression. You can
specify start position and, optionally, the number of characters to be
returned.

Example:
PRINT MID$ ("UBI PRINTER",5,2) yields:
PR

RIGHT$
The RIGHT$ function returns a certain number of characters from
the right side of a string expression, i.e. from the end. The comple-
mentary instruction is LEFT$.

Example:
PRINT RIGHT$("UBI PRINTER",7) yields:
PRINTER

SGN
The SGN function returns the sign (1 = positive, -1 = negative or 0
= zero) of a numeric expression.

Example:
PRINT SGN(5-10) yields:
-1

SPACE$
The SPACE$ function returns a specified number of space charac-
ters and is e.g. useful for creating tables with monospace characters.

Example:
10 FONT "Swiss 721 BT"
20 X%=100 : Y%=300
30 FOR Q%=1 TO 5
40 INPUT "Commodity: ", A$
50 INPUT "Price $:", B$
60 C$=SPACE$(15-LEN(A$))
70 PRPOS X%,Y%
80 PRTXT A$+C$+"$ "+B$
90 Y%=Y%-40
100 NEXT
110 PRINTFEED

Note:
When entering the price in the ex-
ample for SPACE$, make sure to
use a period character (.) to indi-
cate the decimal point.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 88

Chapter 9 Data Handling

STR$
The STR$ function returns the string representation of a numeric
expression. The complementary instruction is VAL.

Example:
10 A%=123
20 A$=STR$(A%)
30 PRINT A%+A%
40 PRINT A$+A$
RUN yields:
246
123123

STRING$
The STRING$ function returns a specified number of a single
character specified either by its ASCII value or by being the first
character in a string expression.

Example:
10 A$="*THE END*"
20 FIRST$=STRING$(4,42)
30 LAST$=STRING$(4,A$)
40 PRINT FIRST$+A$+LAST$
RUN yields:
*****THE END*****

VAL
The VAL function returns the numeric representation of a string
expression. The complementary instruction is STR$.

VAL is for example used in connection with random files, which
only accept strings (see chapters 7.5 and 8.4). Thus numeric
expressions must be converted to string format using STR$ before
they are PUT in a random file and be converted back to numeric
values using VAL after you GET them back from the file.

Another application is when you want to calculate using data in a
string expression, e.g. when reading the printer's clock (also see
chapter 9.3).

Example of how to use the printer as an alarm clock:
10 INPUT "Set Alarm"; A%
20 B%=VAL(TIME$)
30 IF B%>=A% THEN GOTO 40 ELSE GOTO 20
40 SOUND 880,100: END
RUN

9.2 Input Data
Conversion,
cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 89

Chapter 9 Data Handling

9.3 Date and Time The printer's CPU board is provided with a battery backed-up real-
time clock (RTC).

The built-in calendar runs from 1980 through 2048 and corrects
illegal values automatically, e.g. 971232 will be corrected to
980101.

The standard formats for date and time are:
Date YYMMDD, where...

YY are the two last digits of the year
MM are two digits representing the month (01–12)
DD are two digits representing the day (01–28|29|30|31)

Time HHMMSS where...
HH are two digits representing the hour (00-23)
MM are two digits representing the minute (00-59)
SS are two digits representing the second (00-59)

In addition to the standard formats, other formats for date and time
can be specified by the following instructions:
FORMAT DATE$ Specifies the format of date strings re-

turned by DATE$ and DATEADD$ in-
structions.

FORMAT TIME$ Specifies the format of date strings re-
turned by TIME$ and TIMEADD$ in-
structions.

NAME DATE$ Specifies the names of the months.
NAME WEEKDAY$ Specifies the names of the weekdays.

The following instructions are used to read the clock/calendar:
<svar> = DATE$ Returns the current date in standard for-

mat to a string variable.
<svar> = DATE$("F") Returns the current date in the format

specified by FORMATDATE$ to a string
variable.

<svar> = TIME$ Returns the current time in standard for-
mat to a string variable.

<svar> = TIME$("F") Returns the current time in the format
specified by FORMATTIME$ to a string
variable.

DATEADD$ Adds or subtracts a number of days to/
from the current date or a specified date
and returns it in standard format, or the
format specified by FORMATDATE$.

TIMEADD$ Adds or subtracts a number of seconds to/
from the current time or a specified mo-
ment of time and returns it in standard
format, or the format specified by
FORMATTIME$.

DATEDIFF Calculates the difference in days between
two specified dates.

TIMEDIFF Calculates the difference in seconds be-
tween two specified moments of time.

WEEKDAY Returns the weekday of a specified date as
a numeric constant (1–7).

☞ Setting Time and Date
See:
• Chapter 15.5

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 90

Chapter 9 Data Handling

9.3 Date and Time,
cont'd.

WEEKDAY$ Returns the name of the weekday of a
specified date in plain text according to
the weekday names specified byNAME
WEEKDAY$, or – if such a name is missing
– the full name in English.

WEEKNUMBER Returns the week number of a specified
date.

TICKS Returns the time passed since last startup
in 1/100 seconds.

Note that in most instructions, you can specify the current date or
time by means of DATE$ or TIME$ respectively, e.g.:
WEEKDAY$ (DATE$)
TIMEDIFF (TIME$, "120000")

This example shows how the date and time formats are set and a
table of the names of months is created. Finally, a number of date
and time parameters are read and printed to the standard OUT
channel after being provided with some explanatory text:
10 FORMAT DATE$ "MMM/DD/YYYY"
20 FORMAT TIME$ "hh.mm pp"
30 NAME DATE$ 1, "Jan":NAME DATE$ 2, "Feb"
40 NAME DATE$ 3, "Mar":NAME DATE$ 4, "Apr"
50 NAME DATE$ 5, "May":NAME DATE$ 6, "Jun"
60 NAME DATE$ 7, "Jul":NAME DATE$ 8, "Aug"
70 NAME DATE$ 9, "Sep":NAME DATE$ 10, "Oct"
80 NAME DATE$ 11, "Nov":NAME DATE$ 12, "Dec"
90 A%=WEEKDAY(DATE$)
100 PRINT WEEKDAY$(DATE$)+" "+DATE$("F")+" "

+TIME$("F")
110 PRINT "Date:",DATE$("F")
120 PRINT "Time:",TIME$("F")
130 PRINT "Weekday:", WEEKDAY$(DATE$)
140 PRINT "Week No.:",WEEKNUMBER (DATE$)
150 PRINT "Day No.:", DATEDIFF ("950101",DATE$)
160 PRINT "Run time:", TICKS\6000;" minutes"
170 IF A%<6 THEN PRINT "This is ";WEEKDAY$(DATE$);

". Go to work!"
180 IF A%>5 THEN PRINT "This is ";WEEKDAY$(DATE$);

". Stay home!"
RUN

yields e.g.:
Friday Jun/09/1995 08.00 am
Date: Jun/09/1995
Time: 08.00 am
Weekday: Friday
Week No.: 23
Day No.: 159
Run time: 1 minutes
This is Friday. Go to work!

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 91

Chapter 9 Data Handling

This example shows how the TICKS function is used to delay the
execution for a specified period of time:
10 INPUT "Enter delay in sec's: ", A%
20 B%=TICKS+(A%*100)
30 GOSUB 1000
40 END
1000 SOUND 440,50 (Start signal)
1010 IF B%<=TICKS THEN SOUND 880,100 ELSE GOTO 1010
1020 RETURN
RUN

The UBI Fingerprint software provides two instructions for gener-
ating random numbers, e.g. for use in test programs.

RANDOM
The RANDOM function generates a random integer within a speci-
fied interval.

This example tests a random dot on the printhead of a 12 dots/mm
EasyCoder 501 XP printer:
10 MIN%=HEAD(-7)*85\100: MAX%=HEAD(-7)*115\100
20 DOTNO%=RANDOM(0,1279)
30 IF HEAD(DOTNO%)<MIN% OR HEAD(DOTNO%)>MAX% THEN
40 BEEP
50 PRINT "ERROR IN DOT "; DOTNO%
60 ELSE
70 BEEP
80 PRINT "HEADTEST: OK!"
90 END IF
RUN

RANDOMIZE
To obtain a higher degree of randomization, the random number
generator can be reseeded using the RANDOMIZE statement. You
can either include an integer with which the generator will be
reseeded, or a prompt will appear asking you to do so.

This example prints a random pattern of dots after the random
number generator has been reseeded:
10 RANDOMIZE
20 FOR Q%=1 TO 100
30 X%=RANDOM(50,400)
40 Y%=RANDOM(50,400)
50 PRPOS X%,Y%
60 PRLINE 5,5
70 NEXT
80 PRINTFEED
RUN

yields:
Random Number Seed (0 to 99999999) ? (prompt)

9.3 Date and Time,
cont'd.

9.4 Random Number
Generation

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 92

Chapter 10 Label Design

10. Label Design
10.1 Creating a

Layout
Field Types
A label layout is made up of a number of fields. There are five
different types of fields:

• Text Field A text field consists of a single line of text.

• Bar Code Field A bar code field consists of a single bar
code, with or without a bar code interpre-
tation in human readable characters.

• Image Field An image field is a picture, drawing, logo-
type or other type of illustration.

• Box Field A box field is a square or rectangular
paper-coloured area surrounded by a black
border line. If the border is sufficiently
thick, the whole area may appear black.

• Line Field A line field is a black line that goes either
along or across the paper web. A short but
thick line can look like a black box.

There are no restrictions, other than the size of the printer's memory,
regarding the number of fields on a single label.

Chapter 10

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 93

Chapter 10 Label Design

10.1 Creating a
Layout, cont'd.

Origin
The positioning of all printable objects on the label, i.e. text fields,
bar code fields, images, boxes, and lines, uses a common system.
The starting point is called “origin” and is the point on the paper that
corresponds to the innermost active dot on the printhead at the
moment when the PRINTFEED statement is executed.

The location of the origo is affected by the following factors:
• Position across the paper web (X-axis):

The position of the origo is determined by the X-Start value in
the Setup Mode .

• Position along the paper web (Y-axis):
The position of the origo is determined by the Feed adjustment
in the Setup Mode and any FORMFEED<nexp> statements
executed before the current PRINTFEED statement or after the
preceding PRINTFEED statement.

Coordinates
Starting from the origin, there is a coordinate system where the X-
axis runs across the paper web from left to right (as seen when facing
the printer) and the Y-axis runs along the paper web from the
printhead and towards the rear end of the paper.

Units of Measure
The unit of measure is always “dots”, i.e. all measures depend on
the density of the printhead. For example, in a printer with a 12 dots/
mm printhead, a dot is 1/12 mm = 0.0833 mm = 0.00328" or 3.28
mils. This implies that a certain label, originally designed for 12
dots/mm, will be printed larger in a 8 dots/mm printer. However,
fonts are specified in points (not dots) and will thus be the same size
regardless of printhead density.

A dot has the same size along both the X-axis and the Y-axis.

Insertion Point
The insertion point of any printable object is specified within this
coordinate system by means of a PRPOS<x-pos>,<y-pos>
statement. For example, the statement PRPOS 100, 200 means
that the object will be inserted at a position 100 dots to the right of
the origin and 200 dots further back along the paper.

☞ PRINTFEED Statement
Also see:
• Chapter 11.3

☞ Setup Mode
Also see:
• Chapter 15.6
• Installation & Operation manual

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 94

Chapter 10 Label Design

Alignment
Once the insertion point is specified, you must also decided which
part of the object should match the insertion point. For example, a
text field forms a rectangle. There are 8 anchor points along the
borders and one in the centre. The anchor points are numbered 1–
9 and specified by means of an ALIGN statement. By specifying e.g.
ALIGN 1 , you will place the lower left corner of the text field at the
insertion point specified by the PRPOS statement.

The illustration below shows the anchor points for the various types
of fields. Refer to the UBI Fingerprint 7.xx Reference Manual,
ALIGN statement for detailed information on the anchor points
such bar codes, where the interpretation is an integrated part of the
bar code pattern, e.g. EAN and UPC codes.

10.1 Creating a
Layout, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 95

Chapter 10 Label Design

Directions
UBI Fingerprint allows printing in four different directions. Using
a DIR statement, you can rotate the printable object clockwise
around the anchor point/insertion point with a 90° increment (0°,
90°, 180°, or 270°), as illustrated below:

10.1 Creating a
Layout, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 96

Chapter 10 Label Design

Layout Files
In addition to the method described above, there is an alternative
method using files for specifying the various fields and their input
data separately (see chapter 10.7). However, the various parameters
of the layout file are based on the same principles as described in
chapters 10.1 – 10.6.

Checking Current Position
After having positioned and specified an object, you can find out the
current position of the insertion point by means of a PRSTAT
function. This implies that after having e.g. entered a line of text,
you can find out how long it will be and where any new object will
be placed unless a new position is specified.
• In print direction 1 or 3, PRSTAT (1) returns the absolute value

of the insertion point along the X-axis, whereas PRSTAT (2)
returns the Y-value of the last executed PRPOS statement.

• In print direction 2 or 4, PRSTAT (2) returns the absolute value
of the insertion point along the Y-axis, whereas PRSTAT (1)
returns the X-value of the last executed PRPOS statement.

Example:
An unknown number of logotypes will be printed with 10 dots
spacing across the paper web. The size of the logotype is not known.
To avoid an “field out of label” error, a limitation in regard of
paper width is included (line 80, change if necessary).
10 PRPOS 0,50
20 PRIMAGE "UBI.1"
30 X%=PRSTAT(1)
40 FOR A%=1 TO 10
50 Z%=PRSTAT(1)
60 PRPOS Z%+10,50
70 PRIMAGE "UBI.1"
80 IF Z%>550 THEN GOTO 100
90 NEXT
100 PRINTFEED
110 END
RUN

Note:
The PRSTAT function can also be used for checking the printer's
status in regard of a number of conditions, see chapter 16.3.

10.1 Creating a
Layout, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 97

Chapter 10 Label Design

10.2 Text Field A text field consists of one or several alphanumeric characters on
the same line (max 300 characters). UBI Fingerprint cannot wrap
text to a new line, but each line must be specified as a separate text
field.

In addition to the standard positioning statements PRPOS, ALIGN
and DIR, a text field can contain the following instructions:

FONT (FT) and FONTD
Specifies the single- or double-byte font to be printed respectively.
Default choice is the single-byte font Swiss 721 BT in 12 points size
and with no slant. Once a font has been specified, it will be used in
all text fields until a new FONT or FONTD statement is executed.

MAG
Fonts can be magnified 1 – 4 times independently in regard of height
and width. This facility is mainly retained for compatibility with
earlier UBI Fingerprint versions. The printout qulaity will be better
if you specify a larger font size rather than magnifying a smaller one.

NORIMAGE (NI) / INVIMAGE (II)
Normally, text is printed in black on a paper-coloured background
(NORIMAGE). Using INVIMAGE, the printing can be inversed so
the paper gives the colour of the characters, whereas the back-
ground will be black. The size of the background is decided by the
character cell. A NORIMAGE statement is only needed when
changing back from INVIMAGE printing.

PRTXT (PT)
Text can be entered in the form of numeric expressions and/or string
expressions. Two or more expression can be combined using
semicolons (;) or, in case of string expressions, by plus signs (+).
String constants must be enclosed by double quotation marks ("...").
Variables are useful for printing e.g. time, date or various counters,
and when the same information is to appear in several places, e.g.
both as plain text and as bar code input data.

☞ Fonts
Also see:
• Chapter 12

NORIMAGE

INVIMAGE

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 98

Chapter 10 Label Design

Summary
To print a text field, the following information and instructions must
be given (default values will substitute missing parameters):

Purpose Instruction Default Remarks
X/Y Position PRPOS (PP) 0/0 Number of dots
Alignment ALIGN (AN) 1 Select ALIGN 1 – 9
Direction DIR 1 Select DIR 1 – 4
Typeface FONT (FT) Swiss 721 BT,12,0

FONTD n.a.
Magnification MAG 1,1 Height 1 – 4, Width 1 – 4
Style INVIMAGE (II) no White on black print

NORIMAGE (NI) yes Black on white print
Text PRTXT (PT) n.a. Field input data
Print a label PRINTFEED (PF) n.a. Resets parameters to default

Example:
10 PRPOS 100,200
20 ALIGN 7
30 DIR 2
40 FONT "Swiss 721 Bold BT,10,15"
50 MAG 2,2
60 INVIMAGE
70 PRTXT "HELLO"
80 PRINTFEED
RUN

10.2 Text Field, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 99

Chapter 10 Label Design

As standard, UBI Fingerprint 7.11 supports 40 of the most common
bar code symbologies including two-dimensional bar codes and dot
codes like PDF417, USD5, MaxiCode, and LEB. Each bar code
(optionally including its human readable interpretation) makes up
a bar code field.

In addition to the standard positioning statements PRPOS, ALIGN
and DIR, a bar code field can contain the following instructions:

BARSET
This statement species the type of bar code and how it will be printed
and can, if so desired, replace the following statements:
BARHEIGHT (BH) Height of the bars in the code
BARRATIO (BR) Ratio between wide and narrow bars
BARTYPE (BT) Bar code type
BARMAG (BM) Enlargement

The BARSET statement contains optional parameters for specify-
ing complex 2-dimensional bar or dot codes, e.g. PDF417 (see UBI
Fingerprint 7.xx Reference Manual).

For common one-dimensional bar codes the following parameters
should be included in the statement:
• Bar code type Name must be given according to list in

chapter 13.1 and be enclosed by double
quotation marks ("...").
Default: "INT2OF5"

• Ratio (wide bars) Default: 3
• Ratio (narrow bars) Default: 1
• Enlargement Affects the bar pattern but not the inter-

pretation, unless the bar font is an inte-
grated part of the code, e.g. EAN/UPC.
Default: 2

• Height Height of the bars in dots.
Default: 100.

BARFONT...ON
Specifies the single-byte font to be used for the bar code interpre-
tation (human readables). Note that in some bar codes (e.g. EAN/
UPC) the interpretation is an integrated part of the code.

The bar font can be specified in regard of:
• Font Default: Swiss 721 BT
• Size in points Default: 12 points.
• Slant in degrees Default: 0.
• Vertical offset Specifies the distance in dots between the

bottom of the bar pattern and the top of the
interpretation characters. Default: 6.

• Height Magnification Default: 1
• Width Magnification Default: 1
• ON Enables the printing of the interpretation.

Default: Disabled

10.3 Bar Code Field

☞ Bar Codes
Also see:
• Chapter 13

☞ Fonts
Also see:
• Chapter 12

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 100

Chapter 10 Label Design

3. Bar Code Field,
cont'd.

BARFONT OFF
To disable bar code interpretation printing, use BARFONTOFF.

PRBAR (PB)
Input data to be used to generate the bar code can be entered in the
form of a numeric or expressions. String constants must be enclosed
by double quotation marks ("..."). Variables are useful for printing
e.g. time, date or various counters, and when the same information
is to appear in several places, e.g. both as plain text and as bar code
input data.

Summary
To print a bar code field, the following information and instructions
be must given (in most cases default values will substitute missing
information):

Purpose Instruction Default Remarks
X/Y Position PRPOS (PP) 0/0 Number of dots
Alignment ALIGN (AN) 1 Select ALIGN 1 – 9
Direction DIR 1 Select DIR 1 – 4
Bar Code Select BARSET see above
Hum. Readables BARFONT...ON see above Can be omitted
Input Data PRBAR (PB) n.a. Input data to bar code field
Print a label PRINTFEED (PF) n.a. Resets parameters to default

Example:
10 PRPOS 50,500
20 ALIGN 7
30 DIR 4
40 BARSET "CODE39",2,1,3,120
50 BARFONT "Swiss 721 Bold BT,10,0",5,1,1 ON
60 PRBAR "UBI"
70 PRINTFEED
RUN

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 101

Chapter 10 Label Design

An image field is a field containing a picture or logotype in .PCX
format, which has been downloaded and installed in the printer.

In addition to the standard positioning statements PRPOS, ALIGN
and DIR, an image field can contain the following instructions:

MAG
Images can be magnified 1-4 times independently in regard of
height and width.

NORIMAGE (NI) / INVIMAGE (II)
Normally, images are printed as created, i.e. in black without any
background (NORIMAGE). Using INVIMAGE the black and non-
printed background can exchange colours. The size of the back-
ground is decided by the size of the image. A NORIMAGE statement
is only needed when changing back from INVIMAGE printing.

PRIMAGE (PM)
Specifies the image by name in the form of a string expression. A
string constant must be enclosed by double quotation marks ("...").
A string variable may be useful when the same image is to appear
in several places. The extension indicates the suitable directions:
Extension .1 matches DIR 1 and DIR 3
Extension .2 matches DIR 2 and DIR 4

Summary
To print an image field, the following instructions must be given (in
most cases default values will substitute missing information):

Purpose Instruction Default Remarks
X/Y Position PRPOS (PP) 0/0 Number of dots
Alignment ALIGN (AN) 1 Select ALIGN 1 – 9
Direction DIR 1 Select DIR 1 – 4
Magnification MAG 1,1 Height 1 – 4, Width 1 – 4
Style INVIMAGE (II) no White-on-black

NORIMAGE (NI) yes Black-on-white
Image PRIMAGE (PM) n.a. .1 or .2 depending on dir.
Print a label PRINTFEED (PF) n.a. Resets parameters to default

Example:
10 PRPOS 50,50
20 ALIGN 9
30 DIR 3
40 MAG 2,2
50 INVIMAGE
60 PRIMAGE "UBI.1"
70 PRINTFEED
RUN

10.4 Image Field
☞ Image Downloading
Also see:
• Chapter 14

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 102

Chapter 10 Label Design

10.5 Box Field A box is a hollow square or rectangle that can be rotated with an
increment of 90° according to the print direction. If the line
thickness is sufficiently large, the box will appear to be filled
(another method is to print an extremely thick short line).

In addition to the standard positioning statements PRPOS, ALIGN
and DIR, a box field can only contain the following instruction:

PRBOX (PX)
Specifies the size of the box in regard of height, width and line
weight (thickness) in dots.

Summary
To print a box, the following information and instructions must be
given (in some cases default values will substitute missing informa-
tion):

Purpose Instruction Default Remarks
X/Y Position PRPOS (PP) 0/0 Number of dots
Alignment ALIGN (AN) 1 Select ALIGN 1 – 9
Direction DIR 1 Select DIR 1 – 4
Box spec:s PRBOX (PX) n.a. Height, width and line weight

in dots
Print a label PRINTFEED (PF) n.a. Resets parameters to default

Example:
10 PRPOS 250,250
20 ALIGN 1
30 DIR 3
40 PRBOX 200,200,10
50 PRINTFEED
RUN

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 103

Chapter 10 Label Design

10.6 Line Field A line can be printed in right angles along or across the paper
according to the print direction.

In addition to the standard positioning statements PRPOS, ALIGN
and DIR, a line field can only contain the following instruction:

PRLINE (PL)
Specifies the size of the line in regard of length and line weight
(thickness) in dots.

Summary
To print a line, the following information and instructions must be
given (in some cases default values will substitute missing informa-
tion):

Purpose Instruction Default Remarks
X/Y Position PRPOS (PP) 0/0 Number of dots
Alignment ALIGN (AN) 1 Select ALIGN 1 – 9
Direction DIR 1 Select DIR 1 – 4
Line spec:s PRLINE (PL) n.a. Length and width in dots
Print a label PRINTFEED (PF) n.a. Resets parameters to default

Example:
10 PRPOS 100,100
20 ALIGN 1
30 DIR 4
40 PRLINE 200,10
50 PRINTFEED
RUN

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 104

Chapter 10 Label Design

10.7 Layout Files Introduction
Many application, e.g. in connection with booking and ticketing,
require the label layout as well as variable input data and logotypes
to be sent to the printer as files or arrays. This method requires less
programming in the printer and less data to be transferred between
printer and host, but some kind of overhead program in the host, that
handles file transfers as well as the input of data, is of great help.

The program instruction is a statement called LAYOUT. Before
using this statement, a number of files or arrays must be created.

Creating a Layout File
The basis of the method is a layout file in random format, that
contains a number of records, each with a length of 52 bytes. Each
record can define:
• a line of fixed and/or variable text,
• a bar code with fixed and/or variable input data,
• bar code interpretation enable/disable and bar code font select,
• a logotype,
• a box, or
• a line.

Each record starts with a 2-byte hexadecimal element number
(bytes 0–1) which is used to link the layout record with a variable
input record or a record in a layout name file as explained later.

Byte 2 contains a single character that specifies the type of record:
A = Logotype (specified by its name)
B = Bar Code
C = Character (i.e. plain text)
H = Bar Code Font
L = Logotype (specified by its number)
S = Separation line
X = Box

The remaining bytes are used differently depending on type of
record and specify e.g. direction, position, font etc. Each such
instruction corresponds to a UBI Fingerprint instruction, e.g.
direction corresponds to DIR statement, alignment to ALIGN, x-
and y-positions to PRPOS etc. Note that there are only10 bytes
available for the font and bar font names. Since most names of
standard fonts are longer, you may need to use font aliases.

Text and bar code records can contain both fixed and variable data.
The fixed data (max. 20 characters) are entered in the layout record.
A parameter (bytes 43–44) specifies how many characters (starting
from the first character) of the fixed data that will be printed or used
to generate the bar code. Possible variable data will be appended to
the fixed data at the position specified in bytes 43–44.

☞ Font Aliases
See:
• Chapter 12.??

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 105

Chapter 10 Label Design

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

TEXT RECORD:

Element No. (00–FF hex)
Type of record (C)

Direction (1–4)
Alignment (1–9)

X-Position (0000–9999)
Y-Position (0000–9999)

Font name (10 char.) Fixed Text (max. 20 char.)

Char. to be printed
in byte 23-42

Byte No.

Example

Normal (blank) or
Inverse printing (I_)

Vertical mag.
Horizontal mag.

Not used

01C11130 450 FONT1 Fixed Text 0 I 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

BAR CODE RECORD:

Element No. (00–FF hex)
Type of record (B)

Direction (1–4)
Alignment (1–9)

X-Position (0000–9999)
Y-Position (0000–9999)

Barcode name (10 char.)
Fixed Data (max. 20 char.)

Char. to be printed
in byte 23-42

Byte No.

Example

Wide/narrow bar
ratio

Magnification
Not used

Height

02B17100 300 CODE39 UBI Printer AB 3 311 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

BAR CODE INTERPRETATION RECORD:

Element No. (00–FF hex)
Type of record (H)

Barfont on/off
0=Off
1=On

Byte No.

Example 03H1 FONT2

Not used
Not used

Not used

Not used
Not used

Not used
Not used

Not usedBarfont name (10 char.) Not used

Creating a Layout File, cont'd.:
Syntax of layout file records for text and bar code printing:

10.7 Layout Files,
cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 106

Chapter 10 Label Design

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

LOGOTYPE RECORD:

Element No. (00–FF hex)
Type of record (A=Logotype by name, L= Logotype by number)

Direction (1–4)
Alignment (1–9)

X-Position (0000–9999)
Y-Position (0000–9999)

Logotype name
(10 char, only if type=A)

Logotype Number
(2 digits, only if type=L)

Byte No.

Example

Vertical mag.
Horizontal mag.

Not used

04A13300 800 UBI.1 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

BOX RECORD:

Element No. (00–FF hex)
Type of record (X)

Direction (1–4)
Alignment (1–9)

X-Position (0000–9999)
Y-Position (0000–9999)

Box Width (0–6000) Box height (0-6000)

Not used

Byte No.

Example

Not used
Not used

Not used

Line thickness
(0-999)

05X11100 440 300 100 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

LINE RECORD:

Element No. (00–FF hex)
Type of record (S)

Direction (1–4)
Alignment (1–9)

X-Position (0000–9999)
Y-Position (0000–9999)

Line length (0-6000) Line thickness (0-6000)

Not used

Byte No.

Example

Not used
Not used

Not used
Not used

06S11100 100 300 10

Not used
Normal (blank) or
Inverse printing (I_)

Creating a Layout File, cont'd.:
Syntax of layout file records for logotype, box and line printing:

10.7 Layout Files,
cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 107

Chapter 10 Label Design

10.7 Layout Files,
cont'd.

Creating a Layout File, cont'd.:
This example shows how a small layout file can be composed:

10 OPEN "LAYOUT.DAT" FOR OUTPUT AS 2 Open random file
20 PRINT #2, "01H1 FONT1 "; Barfont record
30 PRINT #2, "02C11100 650 FONT1 Fixed Text 11I 22 "; Text record
40 PRINT #2, "02C11130 450 FONT1 Fixed Text 0 11 "; Text record
50 PRINT #2, "03B17100 300 CODE39 UBI 3 311 100"; Bar code record
60 PRINT #2, "04A12300 800 UBI.1 11 "; Logotype record
70 PRINT #2, "05X11100 440 300 100 5 "; Box record
80 PRINT #2, "06S11100 100 300 10 "; Line record
90 CLOSE 2 Close file

There are certain rules that should be observed:
• Each record must be exactly 52 bytes long and be appended by

a semicolon (;).
• It is essential that the different types of data are entered exactly

in the correct positions. Any input in unused bytes will be
ignored.

• The records are executed in the order they are entered. The
reference number at the start of each record does not affect the
order of execution. This implies that a barfont record will affect
all following bar code records, but not those already entered.

• When using bar code interpretation, do not enter a bar code
record directly after a record with inverse printing, since the bar
code interpretation will be inversed as well. A text or logotype
record without inverse printing between the bar code record and
the inversed record will reset printing to normal.

Creating a Logotype Name File
Next step is to create a logotype name file. This is a necessary step
even if you are not going to use any logotype in your layout (in this
case the file can be empty). In the layout file, you can set a logotype
record to use logotypes specified either by name or by number.

• If you specify logotype-by-name (record type A), the printer's
entire memory will be searched for an image with the specified
name. A logotype-by-name file is composed by a number of
records with a length of 10 bytes each that contain the image
names, e.g.:
10 OPEN "LOGNAME.DAT" FOR OUTPUT AS 1
20 PRINT#1, "UBI.1 "
30 PRINT#1, "UBI.2 "
40 PRINT#1, "DIAMONDS.1"
50 PRINT#1, "DIAMONDS.2";
60 CLOSE 1

Note that the last record in a sequential file must be appended by a
semicolon (;).

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 108

Chapter 10 Label Design

10.7 Layout Files,
cont'd.

Creating a Logotype Name File, cont'd.:
• If you specify logotype-by-number (record type L), you must

have a logotype name file. A logotype-by-number file is com-
posed by a number of records with a length of 13 bytes each. The
first 2 bytes is a reference number (0–99), the third byte is always
a colon (:) and the following 10 bytes are used for the image
name:
10 OPEN "LOGNAME.DAT" FOR OUTPUT AS 1
20 PRINT#1, "0 :UBI.1 "
30 PRINT#1, "1 :UBI.2 "
40 PRINT#1, "2 :DIAMONDS.1"
50 PRINT#1, "3 :DIAMONDS.2";
60 CLOSE 1

Note that the last record in a sequential file must be appended by a
semicolon (;).

Creating a Data File or Array
You will also need a data file or data array. This file or array contains
variable data that will be placed in the position specified by the
layout. Each data record starts with a hexadecimal element number
(00-FF hex) that links the data to the layout record or records that
start with the same element number. Thus you can e.g. use a single
data record to generate a number of text fields with various locations
and appearances as well as to generate a bar code.

If you for some reason do not use variable data, you will still need
to create either an empty data file or an empty data array.

• Create a data array like this:
10 DIM LAYDATA$(7)
20 LAYDATA$(0)="01Mincemeat"
30 LAYDATA$(1)="0AVeal"
40 LAYDATA$(2)="17Roast Beef"
50 LAYDATA$(3)="3FSausages"
60 LAYDATA$(4)="02Venison"
70 LAYDATA$(5)="06Lamb Chops"
80 LAYDATA$(6)="7CPork Chops"

• You can create a data file with the same content in a similar way:
10 OPEN "LAYDATA.DAT" FOR OUTPUT AS 1
20 PRINT#1,"01Mincemeat"
30 PRINT#1,"0AVeal"
40 PRINT#1,"17Roast Beef"
50 PRINT#1,"3FSausages"
60 PRINT#1,"02Venison"
70 PRINT#1,"06Lamb Chops"
80 PRINT#1,"7CPork Chops";
90 CLOSE 1

Note that the last record in a sequential file must be appended by a
semicolon (;).

☞ Arrays
Also see:
• Chapter 6.10

IMPORTANT!
The LAYOUT statement requires that
you use the same format (either files or
arrays) for both data and errors.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 109

Chapter 10 Label Design

☞ Arrays
Also see:
• Chapter 6.10

Creating an Error File or Array
The last requirement is an error file or array that can store any errors
that may occur. If you use a data array, you must use an error array,
and if you use a data file, you must use an error file. The following
errors will be stored and presented in said order:
1 If an error occurs in a layout record, the number of the record

(1...nn) and the error number is placed in the error array or file.
2 If a data record cannot be used in a layout record, an the index

of the unused data record (0...nn) plus the error code -1 is placed
in the error array or file.

• Error arrays must be large enough to accommodate all possible
errors. Thus, use a DIM statement to specify a one-dimensional
array with a number of elements that is twice the sum of all layout
records plus twice the sum of all data records. You should also
include some routine that reads the array, e.g.:
10 DIM QERR%(28)
20 QERR%(0)=0
.....
190 IF QERR%(1)=0 THEN GOTO 260
200 PRINT "-ERROR- LAYOUT 1"
210 I%=0
220 IF QERR%(I%)=0 THEN GOTO 260
230 PRINT "ERROR ";QERR%(I%+1);" in record ";QERR%(I%)
240 I%=I%+2
250 GOTO 220
260 PRINTFEED

• Error files require a little more programming to handle the error
message, e.g.:
220 OPEN "ERRORS.DAT" FOR INPUT AS 10
230 IF EOF(10) THEN GOTO 280 ELSE GOTO 240
240 FOR A%=1 TO 28
250 INPUT #10, A$
260 PRINT A$
270 NEXT A%
280 PRINTFEED

Note that the loop in line 240 must be large enough to accommodate
all possible errors.

10.7 Layout Files,
cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 110

Chapter 10 Label Design

10 DIM QERR%(28)
20 LAYDATA$(0)="02Var. input"
30 LAYDATA$(1)="03 PRINTER"
40 QERR%(0)=0
50 OPEN "LOGNAME.DAT" FOR OUTPUT AS 1
60 PRINT #1, "UBI.1";
70 CLOSE 1
80 REM:LAYOUT FILE
90 OPEN "LAYOUT.DAT" FOR OUTPUT AS 2
100 PRINT #2, "01H1 FONT1 ";
110 PRINT #2, "02C11100 650 FONT1 Fixed Text 11I 22 ";
120 PRINT #2, "02C11130 450 FONT1 Fixed Text 0 11 ";
130 PRINT #2, "03B17100 300 CODE39 UBI 3 311 100";
140 PRINT #2, "04A12300 800 UBI.1 11 ";
150 PRINT #2, "05X11100 440 300 100 5 ";
160 PRINT #2, "06S11100 100 300 10 ";
170 CLOSE 2
180 LAYOUT "LAYOUT.DAT","LOGNAME.DAT",LAYDATA$,QERR%
190 IF QERR%(1)=0 THEN GOTO 260
200 PRINT "-ERROR- LAYOUT 1"
210 I%=0
220 IF QERR%(I%)=0 THEN GOTO 260
230 PRINT " ERROR "; QERR%(I%+1); " in record "; QERR%(I%)
240 I%=I%+2
250 GOTO 220
260 PRINTFEED
RUN

Using the Files in a LAYOUT Statement
Now, you have all the files you need to issue a LAYOUT statement.
This statement combines the layout file, the logotype file, the data
file/array, and the error file/array into a printable image. Depending
on whether you have selected to use data and error files or arrays,
the statement will have a somewhat different syntax:

Files:

LAYOUT F, <layout file>, <logotype file>,<data file>,<error file>

Arrays:

LAYOUT <layout file>,<logotype file>,<data array>,<error array>

Note that you cannot omit any file or array, since the syntax requires
a file name or array designation in each position. If you, for
example, do not require any logotype, you must still create an empty
logotype file.

Example:
The example below shows a simple layout created using the layout
statement in combination with data and error arrays:

10.7 Layout Files,
cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 111

Chapter 11 Printing Control

11. Printing Control
11.1 Paper Feed In order to provide maximum flexibility, there are a number of

instructions for controlling the paper feed without actually printing
any labels:
CLEANFEED Runs the printer's paper feed mechanism

in order to facilitate cleaning of the print
roller.

FORMFEED Feeds out a blank label (or similar) or
optionally feeds out or pulls back a speci-
fied amount of paper without printing.

TESTFEED Adjusts the label stop sensor or black
mark sensor while feeding out a number
of blank labels (similar).

LBLCOND Overrides the paper feed setup.

The paper is feed past the printhead by a rubber-coated roller driven
by a stepper motor controoled by the firmware. The movement of
the paper is detected by the label stop sensor (LSS) or black mark
sensor (BMS), except when various types of paper strip are used.

The printer's setup in regard of Media; Media Size; Length and
Media; Media Type is essential for how the paper feed will work.
There are four or five different types of Media Type options (also
see the Installation & Operation manual):
• Label (w gaps)
• Ticket (w mark)
• Ticket (w gaps)
• Fix length strip
• Var length strip

When a FORMFEED, TESTFEED or PRINTFEED statement is
executed and the paper web is fed out, the photo-electric label stop
sensor detects the front edge of each new label or the rear edge of
each detection gap. Alternatively the black mark sensor detects the
front edge of each black mark.

By performing a TESTFEED operation after loading a new supply
of paper, the firmware is able to measure the distance between the
forward edges of two consecutive labels, thereby determining the
label length, and can adjust the paper feed accordingly. The same
principle applies to tickets or tags with detection gaps and tickets
with black marks.

Chapter 11

☞ TESTFEED
To execute a TESTFEED at paper load,
simultaneously press <Shift > + <Feed> on
the printer's keyboard.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 112

Chapter 11 Printing Control

11.1 Paper Feed,
cont'd.

In case of paper strip, the LSS will only detect possible out-of-paper
conditions, and the amount of paper feed is decided in two different
ways:
• Fixed length strip

The amount of paper feed for each FORMFEED, TESTFEED and
PRINTFEED operation is decided by the Media; Media Size;
Length setup.

• Variable length strip
At the execution of a PRINTFEED, the firmware will add a
sufficient amount of paper feed after the last printable object to
allow the paper to be torn off. Note that e.g. a blank space
character or a “white” part of an image is also regarded as a
printable object. The length of TESTFEED and FORMFEED
operations is decided by the Media; Media Size; Length setup.

The Feedadjust setup allows you to perform two global adjust-
ments to the paper feed described above:
• Start Adjust
• Stop Adjust

By default, both these two parameters are set to 0, which allows for
proper tear-off operation when there is no requirement of printing
immediately at the forward edge of the label (or equivalent media).
• Start Adjust decides how much paper will be fed out or pulled

back before the FORMFEED, TESTFEED or PRINTFEED is
executed. Usually, there is a small distance between the dis-
penser shaft or tear off edge and the printhead. Thus, if you e.g.
want to start printing directly at the forward edge of the label, you
must pull back the paper before printing by means of a negative
start adjust value.

• Stop Adjust decides how much extra or less paper will be fed out
after the FORMFEED, TESTFEED or PRINTFEED is executed.

Note that so far we have only discussed how the paper feed will
work regardless which program is run or what labels are printed.
There are several ways to let the program control the paper feed
without changing the setup:

FORMFEED
As already mentioned, if the FORMFEED statement is issued
without any specification of the feed length, it will feed out a
complete blank label (or the equivalent). But the FORMFEED
statement can also specified as a positive or negative number of
dots. However, it is not recommended to use this facility to
substitute or modify the global Start Adjust and Stop Adjust setup
as a part of the program execution.

LBLCOND
The LBLCOND statement can be used to override the values for the
Start Adjust and/or Stop Adjust set in the Setup Mode. It can also
be used to disable the LSS/BMS for a specified length of paper feed,
e.g. to avoid text or pictures on the backside of a ticket being
mistakenly detected as black marks, or when using irregularly
shaped labels.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 113

Chapter 11 Printing Control

The relation between paper and printhead when the PRINTFEED
statement is executed decides all positioning along the Y-axis, i.e.
along the paper web. Likewise, the relation between the paper and
the cutting edge when a CUT statement is executed decides where
the paper will be cut off.

The following instructions are used in connection with the actual
printing:
CUT Activates the optional paper cutter.
CUT ON/OFF Enables/disables automatic cut-off op-

eration in connection with each
PRINTFEED statement.

LTS& ON/OFF Enables/disables the label-taken sensor.
PRINT KEY ON/OFF Enables/disables PRINTFEED execution

by means of the Print key.
PRINTFEED Prints a single label, ticket, tag or piece of

strip, or a batch of labels, tickets etc.

CUT
Activates the optional paper cutter. As opposed to the CUT ON/
OFF statement (see below), this statement allows you to control the
cutter independently from the PRINTFEED statements. Since there
is a longer distance from the printhead to the cutting edge than to the
tear-off edge, the paper feed may need to be adjusted by means of
the Start- and Stopadjust setup.

CUT ON/OFF
Enables/disables automatic cut-off initiated by each PRINTFEED
statement and also allows you to decide the distance in dots by
which the paper will be fed out before cutting and pulled back
afterwards.

LTS& ON/OFF
These statements enables or disables the label-taken sensor, which
is an photoelectrical sensor that detects when a label has not been
removed from the printer's outfeed slot, and holds the printing until
the label has been removed.

PRINT KEY ON|OFF
These two instructions can only be issued in the Immediate Mode
and in the UBI Direct Protocol and enables/disables a single
PRINTFEED operation to be automatically executed each time the
<Print > key on the printer's built-in keyboard is pressed.

11.1 Paper Feed,
cont'd.

11.2 Printing

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 114

Chapter 11 Printing Control

PRINTFEED (PF)
At the execution of a PRINTFEED statement, the firmware proc-
esses all previously entered text fields, bar code fields, image fields,
box fields and line fields (see chapter 10) into a bitmap pattern. The
bitmap pattern controls the heating of the printhead dots and the
stepper motor that feeds the paper past the printhead. By default,
each PRINTFEED statement produces one single copy, but the size
of a batch of labels (or the equivalent) can optionally be specified.

After the execution of a PRINTFEED statement, the following
statements are reset to their respective default values:

Statement Default
ALIGN 1
BARFONT "Swiss 721 BT", 12, 0, 6, 1, OFF
BARFONT ON/OFF OFF
BARHEIGHT 100
BARMAG 2
BARRATIO 3, 1
BARSET "INT2OF5", 3, 1, 2, 100, 2, 1, 2, 0, 0
BARTYPE "INT2OF5"
DIR 1
FONT "Swiss 721 BT", 12, 0
INVIMAGE NORIMAGE
MAG 1, 1
PRPOS 0, 0

This does only affect new statements executed after the PRINTFEED
statement, but not already executed statements. The amount of
paper fed out at the execution of a PRINTFEED statements under
various conditions is discussed in chapter 11.1.

Example (printing identical labels):
10 PRPOS 100, 100
20 FONT "Swiss 721 Bold BT", 14, 10
30 PRTXT "TEST LABEL"
40 PRINTFEED 5
RUN

Example (printing five copies of the same label layout with
consecutive numbering):
10 FOR A%=1 TO 5
20 PRPOS 100, 100
30 FONT "Swiss 721 Bold BT", 14, 10
40 PRTXT "LABEL ";A%
50 PRINTFEED
60 NEXT A%
RUN

11.2 Printing, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 115

Chapter 11 Printing Control

ACTLEN
This function returns the approximate length in dots of most
recently executed paper feed operation. It can for example be used
to determine the length of the labels before printing a list, so the list
can be divided into portions that fit the labels.

Example:
10 FORMFEED
20 PRINT ACTLEN
RUN

The term “Batch Printing” means the process of printing several
labels without stopping the paper feed motor between labels. The
labels may be exact copies or differ more or less in appearance.

When a PRINTFEED is executed, the firmware processes the
program instructions into a bitmap pattern and stores it in one of the
two image buffers in the printer's temporary memory. The image
buffer compensates for differences between processing time and
printing time.

Next step is to use the bitmap pattern to control the heating of the
printhead dots while the ribbon and/or paper is fed past the
printhead. Obviously, the print speed causes the image buffer to be
emptied more quickly.

Normally, when the first image buffer is emptied and the printing
is completed, the firmware can process a new bitmap pattern and
store it in the second image buffer. By means of an OPTIMIZE
"BATCH"ON statement, you can make the firmware start process-
ing next label image and store it in the second image buffer while
the first label is still in process of being printed. Thus, by switching
between the two image buffers, a high continous print speed can be
maintained.

There are a number of instructions that facilitate batch printing:
FIELDNO Divides the program into portions that

can be cleared individually.
CLL Clears part or all of the image buffer.
OPTIMIZE "BATCH" ON Enables optimizing.
OPTIMIZE "BATCH" OFF Disables optimizing.

When using batch printing, consider this:
• The program must be written as to allow batch printing.
• In case of small differences between labels, make use of CLL and

FIELDNO instructions and write the program so the variable
data are processed last.

• Always use the OPTIMIZE"BATCH"ON strategy.

Should a the printer stop between labels, lower the print speed
somewhat. Usually, the overall time to produce a certain number of
labels is more important than the actual print speed.

11.3 Length of Last
Feed Operation

11.4 Batch Printing

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 116

Chapter 11 Printing Control

CLL & FIELDNO
The image buffer stores the bitmap pattern of the label layout
between processing and printing. The image buffer can be cleared
partially or completely by means of a CLL statement.
• Complete clearing is obtained by a CLL statement without any

reference to a field (see below) and is useful to avoid printing a
faulty label after certain errors have occurred.

• Partial clearing is used in connection with print repetition when
only part of the label should be modified between the copies. In
this case, the CLL statement must include a reference to a field,
specified by a FIELDNO function. When a CLL statement is
executed, the image buffer will be cleared from the specified
field to the end of the program.

In this example, the text “Month” is kept in the image buffer,
whereas the names of the months are cleared from the image buffer
as soon as they are printed, one after the other:
10 FONT "Swiss 721 Bold BT",18,10
20 PRPOS 100,300
30 PRTXT "MONTH:"
40 PRPOS 100,200
50 A%=FIELDNO
60 PRTXT "JANUARY":PRINTFEED
70 CLL A%
80 FONT "Swiss 721 Bold BT",18,10
90 PRPOS 100,200
100 PRTXT "FEBRUARY":PRINTFEED
110 CLL A%
120 FONT "Swiss 721 Bold BT",18,10
130 PRPOS 100,200
140 PRTXT "MARCH":PRINTFEED
150 CLL A%
RUN

OPTIMIZE "BATCH" ON/OFF
This statement is used to speed up batch printing. The program
execution will not wait for the printing of a label to be completed,
but proceeds executing next label image into the other image buffer
as soon as possible.

The default setting is OPTIMIZE"BATCH"OFF. However, if all
the following conditions are fulfilled, OPTIMIZE"BATCH"ON
will automatically be invoked:
• A value >1 is entered for the PRINTFEED statement.
• LTS& OFF (default)
• CUT OFF (default)

OPTIMIZE"BATCH"ON revokes OPTIMIZE"BATCH"OFF.

11.4 Batch Printing,
cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 117

Chapter 12 Fonts

12. Fonts
12.1 Font Types UBI Fingerprint 7.xx supports scalable single- and double-byte

fonts in TrueDoc (.PFR = Portable Font Resource) and TrueType
(.TTF) format that comply with the Unicode standard.

TrueDoc fonts in .PFR format can only be obtained from UBI. A
single .PFR file can contain a number of different fonts. Compared
with TrueType fonts, TrueDoc fonts require less memory spaces
and work faster.

UBI Fingerprint 7.11 contains 15 single-byte standard fonts in the
systems parts (“Kernel”) of the permanent memory (device "rom:).

TrueType fonts from sources other the UBI could normally be used
provided they comply with the Unicode standard. This is usually the
case with TrueType fonts for Windows 95 and Windows NT.

Single-byte fonts are fonts that are mapped in the range of ASCII
0-127 dec (7-bit communication) or ASCII 0-255 dec (8 bit
communication). Example of single-byte fonts are Latin, Greek,
Cyrillic, Arabic and Hebrew fonts.

Single-byte fonts are selected by means of the statements FONT and
BARFONT (see chapter 10.2 and 10.3 respectively) and the corre-
sponding character set by means of the statement NASC (see chapter
9.1).

Double-byte fonts are fonts that are mapped in the area of ASCII 0-
65,536 dec. 8 bit communication must be selected. This means that
any glyph (i.e. characters, interpunctation marks, symbols, digits
etc.) in the Unicode World Wide Character Standard, can be
specified. In its current version (2.0), Unicode contains 38,885
glyphs. Example of languages that require double-byte fonts are
Chinese, Japanese and Korean.

Double-byte fonts are selected by means of the statement FONTD
(see chapter 10.2) and the corresponding character set by means of
the statement NASCD (see chapter 9.1). Note that double-byte fonts
cannot be used for bar code interpretations (BARFONT).

Fonts can be rotated in 4 directions using a DIR statement. Using
the FONT, FONTD and BARFONT statements, fonts can be specified
in regard of size in points (1 point = 1/72" = 0.352 mm) and slant
in degrees (clockwise). It is also possible to magnify fonts using a
MAG statement. This facility is mainly retained for compatibility
with earlier UBI Fingerprint versions, since the printout quality will
suffer. We recommend specifying a larger size in points rather than
using a MAG statement.

Chapter 12

☞ Standard Fonts
Also see:
• Chapter 12.5
• UBI Fingerprint 7.11 Reference Manual

☞ Unicode
Also see:
• http://www.unicode.org

12.2 Single-byte
Fonts

12.3 Double-byte
Fonts

12.4 Font Direction,
Size and Slant

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 118

Chapter 12 Fonts

As standard, the UBI Fingerprint firmware contains 15 single-byte
TrueDoc fonts stored in the systems part (“Kernel”) of the perma-
nent memory. In the FONT and BARFONT statements, the full
names according to the list below must be used (case sensitive).
• Century Schoolbook BT
• Dutch 801 Roman BT
• Dutch 801 Bold BT
• Futura Light BT
• Letter Gothic 12 Pitch BT
• Monospace 821 BT
• Monospace 821 Bold BT
• OCR-A BT (see note)
• OCR-B 10 Pitch BT (see note)
• Prestige 12 Pitch Bold BT
• Swiss 721 BT
• Swiss 721 Bold BT
• Swiss 721 Bold Condensed BT
• Zapf Dingbats BT (see note)
• Zurich Extra Condensed BT
Note:
When selecting OCR-A BT, OCR-B 10 Pitch BT or Zapf Dingbats BT, the
printer will automatically switch from the presently selected character set to
a special one for the font in question (see later in this chapter). As soon as any
other font is selected again, the printer will automatically return to the
previously selected character set.

To maintain compatibility with earlier versions of UBI Fingerprint,
the old font name convention for naming standard bitmap fonts can
also be used, e.g. "SW030RSN" or "MS060BMN.2". The firmware
will select the corresponding TrueDoc font in the printer's memory
and set its parameters so its appearance and size come as close to the
specified bitmap font as possible.

The standard complement of fonts listed in chapter 12.5 can be
supplemented by additional fonts using three different methods:
• Downloading fonts from a Font Install Card.

The card must be inserted before the printer is started. At startup
the fonts are automatically downloaded, installed and perma-
nently stored in the printer's memory. The fonts can be used
without the card being present

• Using fonts from a Font Card.
The card must be inserted before the printer is started. At startup
the fonts are automatically installed, but not copied to the
printer's memory (i.e. the card must always be present before
such a font can be used).

• Downloading font files.
Font files can be downloaded and installed by means of either of
the two statements IMAGE LOAD and TRANSFERKERMIT.
There is no need to restart the printer before using the font in
question.

12.5 Standard Fonts

☞ Font Printout Samples
See:
• UBI Fingerprint 7.11 Reference Manual

12.7 Adding Fonts

12.6 Old Font Names

Note:
Double-byte fonts are often too large to
be stored in the printer's memory. In
such cases, a Font Card must be used.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 119

Chapter 12 Fonts

Regardless in which parts of the memory the different fonts are
stored, they can all be listed to the standard OUT channel by a single
statement, namely FONTS. This statement does not list dedicated
bar code fonts.

Another method of listing fonts is to use a FONTNAME$ function,
which also will list dedicated barcode fonts.

Font files can be listed to the standard OUT channel by means of the
FILES statement.

This example shows how all fonts can be listed:
10 A$ = FONTNAME$(0)
20 IF A$ ="" THEN END
30 PRINT A$
40 A$ = FONTNAME$(-1)
50 GOTO 20
RUN

Font files stored in the read/write devices ("c:", "tmp:" and "card1:")
can be deleted using KILL statements. Even if a font file is
KILLED, the name of the font will still be listed e.g. by a FONTS
statement until the printer is restarted. Note that the names of the
font files may differ from the name of the font.

The names of the standard fonts UBI Fingerprint are rather long and
may be cumbersome to use. They are also incompatible with the
LAYOUT statement, which restricts the font and barfont names to 10
characters.

However, it is possible to create a file containing a list of font aliases.
The file should be named exactly as shown here (note the leading
period character that specifies it as a system file):
"c:.FONTALIAS"

The format of the file should be:

"<Alias name #1>","<Name of font>"[,size[,<slant>]]

"<Alias name #2>","<Name of font>"[,size[,<slant>]]

"<Alias name #3>","<Name of font>"[,size[,<slant>]]
etc., etc.

The file can contain as many fontname aliases as required. The
default size is 12 points and the default slant is 0°.

A font alias can be used as any other font, but its size and slant can
not be changed.

Examples:
"BODYTEXT","Century Schoolbook BT",10
"HEADLINE","Swiss 721 Bold BT",18
"WARNING","Swiss 721 BT",12,10

12.8 Listing Fonts

12.9 Removing Fonts

12.10 Font Aliases

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 120

Chapter 13 Bar Codes

A large number of commonly used bar code symbologies are
included in the systems part (“Kernel”) of the printer's permanent
memory.

Some bar codes require special barcode fonts, e.g. UPC and EAN
bar codes.

Bar codes cannot be listed by means of any UBI Fingerprint
instruction. As standard, UBI Fingerprint 7.11 contains the follow-
ing bar codes.

Bar Code Type Designation
Codabar "CODABAR"
Code 11 "CODE11"
Code 39 "CODE39"
Code 39 full ASCII "CODE39A"
Code 39 w. checksum "CODE39C"
Code 93 "CODE93"
Code 128 "CODE128"
DUN-14/16 "DUN"
EAN-8 "EAN8"
EAN-13 "EAN13"
EAN-128 "EAN128"
Five-Character Supplemental Code "ADDON5"
Industrial 2 of 5 "C2OF5IND"
Industrial 2 of 5 w. checksum "C2OF5INDC"
Interleaved 2 of 5 "INT2OF5"
Interleaved 2 of 5 w. checksum "I2OF5C"
Interleaved 2 of 5 A "I2OF5A"
LEB "LEB"
Matrix 2 of 5 "C2OF5MAT"
MSI (modified Plessey) "MSI"
Plessey "PLESSEY"
PDF 417 "PDF417"
Philips "PHILIPS"
Philips (alternative designation) "DOT CODE A"
Plessey "PLESSEY"
Straight 2 of 5 "C2OF5"
Two-Character Supplemental Code "ADDON2"
UCC-128 Serial Shipping Container Code "UCC128"
UPC-5 digits Add-On Code "SCCADDON"
UPC-A "UPCA"
UPC-D1 "UPCD1"
UPC-D2 "UPCD2"
UPC-D3 "UPCD3"
UPC-D4 "UPCD4"
UPC-D5 "UPCD5"
UPC-E "UPCE"
UPC Shipping Container Code "UPCSCC"
USD5 "USD5"

Some printers can be set up by means of special Code 128 bar codes
that are read using a Bar Code Wand. Refer to UBI Fingerprint 7.xx
Reference Manual.

13.1 Standard Bar
Codes

13. Bar Codes

Chapter 13

13.2 Setup Bar Codes

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 121

Chapter 14 Images

14. IMAGES
14.1 Images vs

Images Files

14.2 Standard Images

There is a distinction between “Images” and “Image Files”:
• “Image” is a generic term for all kinds of printable pictures, e.g.

symbols, logotypes or other illustrations, in the internal bitmap
format of UBI Fingerprint.

• “Image Files” are files in various bitmap formats that can be
converted to “Images” in the internal bitmap format of UBI
Fingerprint. Images files can be stored in the printer's memory,
but cannot be used for printing before they have been converted
to “Images”.

As standard, the systems part (“Kernel”) of the printer's permanent
memory contains a number of images primarily used for printing
test labels.

Image files in .PCX format can be downloaded to the printer using
the Kermit protocol and then converted to UBI's internal image
format by means of the instruction RUN "pcx2bmp" (see chapter
6.5) .

Image files in .PCX format can also be both downloaded, automati-
cally converted to images and installed by means of the IMAGELOAD
statement.

Image files in Intel hex formats, or formats according to UBI
Fingerprint file transfer protocols UBI00 , UBI01 , UBI02 , UBI03 ,
or UBI10 , can be downloaded to the printer using the instructions
STORE IMAGE, STORE INPUT and STORE OFF, e.g.:
10 STORE OFF
20 INPUT "Name:", N$
30 INPUT "Width:", W%
40 INPUT "Height:", H%
50 INPUT "Protocol:", P$
60 STORE IMAGE N$, W%, H%, P$
70 STORE INPUT 100
80 STORE OFF
RUN

The system variable SYSVAR allows you to check the result of an
image download by means of STORE INPUT:
• SYSVAR (16) reads the number of bytes received.
• SYSVAR (17) reads the number of frames received.

Both values are reset when a new STORE IMAGE statement is
executed.

14.3 Downloading
Image Files

Chapter 14

☞ Downloading via Kermit
Also see:
• Chapter 6.8

☞ Image Transfer Protocols
Also see:
• UBI Fingerprint 7.11 Reference Manual

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 122

Chapter 14 Images

14.4 Listing Images The names of all images stored in the various parts of the printer's
memory can be listed to the std. OUT channel by means of an
IMAGES statement or a program using the IMAGENAME$ function.

Image files can be listed to the std. OUT channel by means of a
FILES statement.

Example:
This example lists all images the the printer's memory (in this case
only standard images):
IMAGES

yields:
CHESS2X2.1 CHESS4X4.1
DIAMONDS.1 UBI.1
UBI.2 UBI010.1
UBI010.2

1543536 bytes free 307456 bytes used
Ok

Images can be removed from the read/write devices (i.e. "c:",
"tmp:" and "card1:") using REMOVEIMAGE statements.

Images files can be removed from the read/write devices (i.e. "c:",
"tmp:" and "card1:") using a KILL statement.

14.5 Removing
Images

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 123

Chapter 15 Printer Function Control

15. Printer Function Control
All UBI Fingerprint 7.xx-compatible printers are provided with a
built-in keuboard containing a set of numeric keys supplemented
with a number of function keys. Separate alphanumeric keyboards
are available as options.

The keys have three purposes:
• To control the printer in the Setup Mode, and to some extent also

in the Immediate Mode.
• To enter input data in the form of ASCII characters.
• To make the program execution branch to subroutines according

to ON KEY...GOSUB statements.

Note that input from the printer's keyboard (see chapter 7.6)
excludes the use of ON KEY...GOSUB statements (see chapter
5.8) and vice versa.

Controlling the Printer in the Setup and Immediate Modes:
• The use of the keyboard in the Setup Mode is described in the

Installation & Operation manual for the printer model in ques-
tion.

• In a printer running in the Immediate Mode, only four keys are
working:
- The <Print > key or button produces a FORMFEED operation,

or – if the printhead is lifted – runs the printer's print roller a
number of rotations in order to facilitate cleaning (CLEANFEED).

- The <Feed> key works the same way as the <Print > button.
- The <Shift> + <Print > keys pressed simultaneously produce

a TESTFEED operation.
- The <Setup> key gives access to the Setup Mode.

• In the Immediate Mode, the printing of labels by means of the
print key can be enabled or disabled using a PRINT KEY ON/
OFF statement, also see chapter 11.3.

Enabling the Keys
Before a key can be used to make the execution branch to a
subroutine using an ON KEY...GOSUB statement, the key must be
enabled using a KEY...ON statement. Enabled keys can also be
disabled again using KEY...OFF statements.

However, the keyboard can also be used to enter input data
(provided "console:" is OPENed for INPUT), and also be used in the
Setup and Test Modes, regardless if the keys are enabled or not.

15.1 Keyboard

Chapter 15

Note:
External keyboard do not work in the
Setup Mode.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 124

Chapter 15 Printer Function Control

Key Id. Numbers
The keys are specified by id. numbers in connections with the
following statements:
KEY...ON Enables the specified key.
KEY...OFF Disables the specified key.
ON KEY...GOSUB... Branches the program execution to a sub-

routine when the specified key is pressed.

Each key has two id. numbers, one for its unshifted position and
another for its shifted position1. To select the shifted position of a
certain key, keep the <Shift> key depressed while you press the
desired key. The id. number of the shifted key is equal to its
unshifted id. number + 100. For example, the <F1> key has id.
number 10 in unshifted position, but id. number 110 in shifted
position.

The illustration below shows the default id. numbers of the key-
board of the EasyCoder 501 XP. The id. number of the <Print >
button or key also applies to printers models without keyboard.

If the keyboard is remapped (see later in this chapter), the id.
numbers will be affected.

Ready ErrorPower EasyCoder 501 XP

Print

3

6

8 9

.

7 Pause

21

0 C

54

F3 F4 F5F1 F2

Shift

Shift

Setup

Feed Enter

Ready ErrorPower EasyCoder 501 XP

10 11 12 13 14 1 2 3

4 5 6

21 0 20

19 16

17

7 8 9 15 18

Shift

Ready ErrorPower EasyCoder 501 XP

110 111 112 113 114 101 102 103

104 105 106

121 100 120

119 116

117

107 108 109 115 118

Actual keyboard
apperance

Unshifted keys
i.d. numbers

Shifted keys
i.d. numbers

15.1 Keyboard, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 125

Chapter 15 Printer Function Control

Key-initiated Branching
What will happen when an enabled key is pressed can be decided
by an ON KEY...GOSUB statement, that branches the program
execution to a subroutine, where additional instructions specify the
action to be taken. Refer to chapter 5.8 for further information and
additional program example.

Here is an example of how two keys (<F1> and <F2>) are enabled
and used to branch to different subroutines. The keys are specified
by their id. numbers (10 and 11 respectively):
10 KEY (10) ON: KEY (11) ON
20 ON KEY (10) GOSUB 1000
30 ON KEY (11) GOSUB 2000
40 GOTO 40
50 END
1000 PRINT "You have pressed F1"
1010 RETURN 50
2000 PRINT "You have pressed F2"
2010 RETURN 50
RUN

Audible Key Response
Each time a key is pressed, the printer's beeper will, by default, emit
a short signal (1200 Hz for 0.03 sec). The frequency and duration
of the signal can be globally changed for all keys by means of a KEY
BEEP statement. Obviously, setting the frequency and/or duration
to 0 will turn off the signal for all keys.

Input from Printer's Keyboard:
Provided "console:" is OPENed for sequential INPUT, the keys can
be used to enter ASCII characters to the program using the
following instructions:
INPUT# reads a string of data to a variable.
INPUT$ reads a limited number of characters to a

variable.
LINE INPUT# reads an entire line to a variable.

Refer to chapter 7.6 for a table showing the ASCII values that the
various keys generate and for a program example. Note that input
from keyboard does not require any keys to be enabled.

15.1 Keyboard, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 126

Chapter 15 Printer Function Control

Remapping the Keyboard
The keyboards of the various printer models are fully remappable
(with exception for the <Shift> key), as to allow the printer to be
adapted to special applications or national standards using the
instruction KEYBMAP$. Thus you can decide which two ASCII
characters each key will produce, with and without the Shift key
being activated. The mapping also decides the id. numbers for the
keys.

The basis of the remapping process is the position number of each
key, as illustrated for the EasyCoder 501 XP below. Note that in the
Setup Mode, the keys have fixed positions that are not affected by
any KEYBMAP$ instructions.

Note the distinction between id. numbers and position numbers!

Keyboard position numbers on an EasyCoder 501 XP. The keys
printed on the keyboard overlay are marked with a shade of grey.
Key positions 1 and 30 cannot be remapped.

54 59 63

6 11 16 21 26 31 36 41 46

2 7 12 17 22 27 32 37 42 47 57

3 8 13 18 23 28 33 38 43 48 53 58 62

55 60 64

29 34 39 44 49

30 35 40 45 50

51 56

52 61

1

Ready ErrorPower EasyCoder 501 XP

Print

3

6

8 9

.

7 Pause

21

0 C

54

F3 F4 F5F1 F2

Shift

Shift

Setup

Feed Enter

Ready ErrorPower EasyCoder 501 XP

1 2 3 4 5 49 50 51

52 53 54

46 48 8

28 13

31

55 56 57 30 29

Ready ErrorPower EasyCoder 501 XP

129 130 131 132 133 177 178 179

180 181 182

174 176 136

156 141

159

183 184 185 158 157

Shift

Actual keyboard
apperance

Unshifted keys
ASCII values

Shifted keys
ASCII values

15.1 Keyboard, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 127

Chapter 15 Printer Function Control

Remapping the Keyboard, cont'd.
The present keyboard mapping can be read to a string variable using
the KEYBMAP$ instruction with the following syntax:

<string variable>=KEYBMAP$(n) where....
n = 0 reads the unshifted characters.
n = 1 reads the shifted characters.

This example reads the unshifted characters on the keyboard of an
EasyCoder 501 XP. Non-existing key positions get ASCII value 0:
10 PRINT "Pos","ASCII","Char."
20 A$=KEYBMAP$(0)
30 FOR B%=1 TO 64
40 C$=MID$(A$,B%,1)
50 E%=ASC(C$)
60 PRINT B%,E%,C$
70 NEXT
RUN

You can also use the KEYBMAP$ instruction to remap the keyboard,
using the following syntax:

KEYBMAP$(n) = <string> where...

n = 0 maps the unshifted characters in ascending position number
order.

n = 1 maps the shifted characters in ascending position number
order.

The string that contains the desired keyboard map should contain
the desired character for each of 64 key positions (in ascending
order) regardless if the keyboard contains that many keys.

Characters, that cannot be produced by the keyboard of the host, can
be substituted by CHR$ functions, where the character is specified
by its ASCII decimal value according to the selected character set
(see NASC statement). The same applies to special characters. See
table below.

Non-existing key positions are mapped as Null, i.e. CHR$(0) .

ASCII decimal values for Special Keys

Key Unshifted Shifted
F1 1 129
F2 2 130
F3 3 131
F4 4 132
F5 5 133
Pause 30 158
Setup 29 157
Feed 28 156
Enter 13 141
C (Clear) 8 136
Print 31 159

15.1 Keyboard, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 128

Chapter 15 Printer Function Control

Remapping the Keyboard, cont'd.
The following example reads back the current keyboard map and
changes the <F1> key to A, the <F2> key to B, and the <F3> key
to C:
10 A$=KEBMAP$(0)
20 B$=LEFT$(A$,1)+"A"+MID$(A$,3,4)+"B"+

MID$(A$,8,4)+"C"+MID$(A$,13)
30 KEYBMAP$(0)=B$
RUN

The following example illustrates the mapping of the keyboard for
an EasyCoder 501 XP (unshifted keys only). Note the limit of max.
300 characters per program line:
10 B$=CHR$128+CHR$1+STRING$(4,0)+CHR$(2)+

STRING$(4,0)+CHR$(3)
20 B$=B$+STRING$(4,0)+CHR$(4)+STRING$(4,0)+

CHR$(5)+STRING$(18,0)
30 B$=B$+".147"+CHR$(0)+"0258"+CHR$(0)+

CHR$(8)+"369"+CHR$(0)+CHR$(31)
40 B$=CHR$(0)+CHR$(28)+CHR$(30)+STRING$(2,0)+

CHR$(13)+CHR$(29)+CHR$(0)
50 KEYBMAP$(0)=B$
RUN

15.1 Keyboard, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 129

Chapter 15 Printer Function Control

All present UBI Fingerprint 7.xx-compatible printers have a 2 × 16
characters LCD (Liquid Crystal Display). The UBI Fingerprint
firmware uses it to show a number of standardized messages, e.g.
in the Setup Mode, but it can also be controlled by programming
instructions (see “Output to Display” below). The display is
provided with a controllable cursor, as described later in this chapter
(“Cursor Control”).

Output to Display
Before you can print any text to the display, it must be opened for
sequential output, e.g.:
10 OPEN "console:" FOR OUTPUT AS 1

Then you should clear any previously displayed message by
sending two empty PRINT# or PRINTONE# statements:
20 PRINT#1:PRINT#1

Now you can send a string to each of the two lines. Note the
appending semicolon on the second line:
30 PRINT#1, "Upper line"
40 PRINT#1, "Lower line";
RUN

This will result in the following message being displayed:

Upper line
Lower line

As a alternative to sending two separate lines, you can also send a
single line consisting of max. 33 characters, where:
• Character 1–16 specifies the upper line
• Character No. 17 is not displayed at all
• Character No. 18–33 specifies the lower line
• The line should be appended by a semicolon (;).

Using this method, the example above would look like this (under-
score characters indicate space characters):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1:PRINT#1
30 PRINT#1,"Upper

–
line

–––––––
Lower

–
line";

RUN

15.2 Display

☞ Clearing the Display
Also see:
• “Cursor Control: Clearing the Display” later

in this chapter.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 130

Chapter 15 Printer Function Control

15.2 Display, cont'd. Cursor Control
The cursor control instructions can be used for four purposes:
• To clear the display from messages (as an alternative to the

double PRINT# statement on line 20 in the example above).
• To enable or disable the cursor.
• To select cursor type (underscore or block/blink)
• To place the cursor at a specified position or to move it.

The cursor is either a black line under a character position in the
display, or a blinking block that intermittently blacks out the
character position:

Each cursor control command should start with the character CSI
(Control Sequence Introducer) = ASCII 155 decimal, or (in case of
7-bit communication) with the characters “ESC” + “ [” (ASCII 27
+ 91 decimal).

Clearing the Display:

Syntax: <CSI> + <<0|1|2>J> where:

CSI = ASCII 155 dec.
0 = From active position to end, inclusive (default)
1 = From start to active position, inclusive
2 = All of the display
J = Must always append the string

Example (clears all of the display):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "2J";

Selecting Cursor Type:

Syntax: <CSI> + <4p|5p> where:

CSI = ASCII 155 dec.
4p = Underscore
5p = Block/Blink (default)

Example (selects underscore-type cursor):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "4p";

Cursor

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 131

Chapter 15 Printer Function Control

Cursor Control, cont'd.:

Enabling/Disabling the Cursor:

Syntax: <CSI> + <2p|3p> where:

CSI = ASCII 155 dec.
2p = Cursor On
3p = Cursor Off (default)

Example (enables the cursor):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "2p";

Note that a semicolon should append the PRINT# instructions in
order to avoid interfering with existing messages in the display.

Setting the Absolute Cursor Position:

Syntax: <CSI> + <<v>;<h>H> where:

CSI = ASCII 155 dec.
v = Is the line (1 = Upper; 2 = Lower)
h = Is the position in the line (1–16)
H = Must always append the string
If v, h or both are missing, the default value is 1.

Example (setting the cursor in upper left position):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "H";

Example (setting the cursor in lower right position):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "2;16H";

Move the Cursor Relative Current Position:

Syntax: <CSI><n>A | B | C | D where:

CSI = ASCII 155 dec.
n = Is number of steps relative current position (default 1)
A = Is direction Up
B = Is direction Down
C = Is direction Forward
D = Is direction Backward

The relative movement must not place the cursor outside the display
area (2 × 16 positions) or the instruction will be ignored.

Example (moving the cursor from the first position in the upper line
to the last position in the lower line):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "1B";
30 PRINT#1, CHR$(155) + "15C";

15.2 Display, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 132

Chapter 15 Printer Function Control

15.3 LED Control
Lamps

Beside showing messages in the printer's display window (see
chapter 15.2, the program can use two of the three LED's (Light
Emitting Diodes) on the printer's front panel to notify the operator
of various conditions.

There are two statements for control the LED's:
LED...ON Turns the specified LED on.
LED...OFF Turns the specified LED off.

The printer's front panel contains three LED's labelled ”Power”,
”Ready” (0), and ”Error” (1):
• The “Power” LED is connected to the printer's power supply and

is lit when the power is on. It cannot be controlled by the
program.

• The two other LED's (“Ready” and “Error”) can be programmed
at will using LED...ON and LED...OFF statements, even
though the printed text on the keyboard imposes certain restric-
tions.

Example:
In this example, the “Ready” LED (0) is lit until an error occur.
Then the “Error” LED (1) is lit instead. The “Error” LED remains
lit until the error is cleared. A suitable error can be generated by
running the program with the printhead lifted.
10 LED 0 ON
20 LED 1 OFF
30 ON ERROR GOTO 1000
40 PRPOS 100,100
50 FONT "Swiss 721 Bold BT",36
60 PRTXT "OK!"
70 PRINTFEED
80 LED 0 ON
90 LED 1 OFF
100 END
1000 LED 0 OFF
1010 LED 1 ON
1020 RESUME
RUN

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 133

Chapter 15 Printer Function Control

15.4 Buzzer In addition to the visual signals given by means of the display and
the LED control lamps (see chapter 15.2 and 15.3), audible signals
can also be initiated by the program execution in order to notify the
operator.

The following instructions can be used:
BEEP Initiates a short signal of fixed frequency

and duration.
SOUND Initiates a signal vith variable frequency

and duration.

The buzzer can be controlled by either a BEEP statement, which
gives a short shrill signal (≈800 Hz for 0.25 sec.), or by a SOUND
statement, which allows you to vary both the frequency and
duration. You can even compose your own melodies, if your
musical ear is not too sensitive!

In this example, a warning signal is emitted from the buzzer e.g.
when the error “printhead lifted” occurs and keeps sounding until
the error is cleared. A short beep indicates that the printer is OK.
10 ON ERROR GOTO 1000
20 PRPOS 100,100
30 FONT "Swiss 721 Bold BT", 36
40 PRTXT "OK!"
50 PRINTFEED : BEEP
60 END
1000 SOUND 880,25 : SOUND 988,25 : SOUND 30000,10
1010 RESUME
RUN

The UBI Fingerprint 7.xx-compatible printers are fitted with a real-
time clock circuit (RTC). The RTC is battery backed-up and will
keep running even when the printer is turned off.

Please refer to chapter 9.3 for information on how to read the
printer's clock/calendar, and on the standard formats for date and
time.

The following instructions are to set the clock/calendar:
DATE$ = <sexp> Sets the date (YYMMDD format)
TIME$ = <sexp> Sets the time (HHMMSS format)

Example (setting the clock/calendar to 08.11.30 January 23,
1998):
DATE$ = "980123"
TIME$ = "081130"

Note that the values must always be entered as string expressions.
Possible numeric expressions can be converted to string format
using STR$ functions (see chapter 9.2).

15.5 Clock/Calendar

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 134

Chapter 15 Printer Function Control

15.6 Printer Setup

1/. An external keyboard cannot be
used in the Setup Mode.

The printer's setup can be changed manually in the Setup Mode
using the built-in keyboard1 or remotely be means of the Terminal
Setup in UBI Shell.

Detailed information on the methods of manual or terminal setup
and the various setup parameters can be found in the Installation &
Operation manual for the printer model in question.

If you want to change some setup parameter either by remote
control (other than Terminal Setup) or as a part of the program
execution, you can use the SETUP statement.

SETUP
This statement can be used in four different ways:
SETUP Makes the printer enter the Setup Mode.
SETUP WRITE Creates a copy of the printer's current

setup and saves it as a file in the printer's
memory under a specified name or re-
turns the current setup to the specified
communication channel.

SETUP<file name> Changes some or all of the setup param-
eters in the printer's current setup accord-
ing to a setup file.

SETUP<string> Changes a single setup parameter.

Reading the Current Setup
The easiest way to read the printer's current setup is to use a SETUP
WRITE statement to return the setup to the serial communication
channel used for output to the host (usually "uart1:").

Example:
SETUP WRITE "uart1:"

Creating a Setup File
Create a setup file using UBI Fingerprint instructions like this:
• OPEN a file for sequential OUTPUT. See chapter 8.3.
• Use a PRINT# statement to enter each parameters you want so

change. The input must follow the stipulated syntax exactly (see
the UBI Fingerprint 7.xx Reference Manual, SETUP statement).

• CLOSE the file.

☞ UBI Shell Startup Program
Also see:
• Installation & Operation manual

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 135

Chapter 15 Printer Function Control

15.6 Printer Setup,
cont'd.

Changing the Setup using a Setup File
Use a SETUP<filename> statement to change the printer's setup.
If the setup file is stored in another part of the printer's memory than
the current directory, the file name should contain a reference to the
device in question.

In the following example, we will first save the current setup under
a new file name and then make a setup file that changes the size of
the transmit buffer on "uart1:" just a little. Finally, we use the setup
file to change the printer's setup.
10 SETUP WRITE "SETUP1.SYS"
20 OPEN "SETUPTEST.SYS" FOR OUTPUT AS #1
30 PRINT#1,"SER-COM,UART1,TRANS BUF,310"
40 CLOSE #1
50 SETUP "SETUPTEST.SYS"
RUN

Changing the Setup using a Setup String
A single setup parameter can be changed without creating any file.
The SETUP statement should be followed by a string following
exactly the same syntax as the corresponding parameter in a Setup
file, but without any leading PRINT# statement.

The same change as in the example above would look this way when
using a setup string:
SETUP "SER-COM,UART1,TRANS BUF,310"

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 136

Chapter 15 Printer Function Control

Some sensors and other conditions can be read or set by means of
the SYSVAR system variable.

SYSVAR
The following SYSVAR parameters are released for public use:
SYSVAR(13) returns the value of the ribbon counter

(requires an optional sensor).
SYSVAR(14) returns the number of errors since last

power on.
SYSVAR(15) returns the number of errors since the

previously executed SYSVAR(15) in-
struction.

SYSVAR(16) returns the number of bytes received at
the execution of a STORE or STORE
INPUT statement.

SYSVAR(17) returns the number of frames received at
the execution of a STORE or STORE
INPUT statement.

SYSVAR(18) returns or sets the verbosity level.
SYSVAR(19) returns or sets the type of error messages

transmitted by the printer.
SYSVAR(20) returns 0 if the printer is set up for direct

thermal or 1 if set up for thermal transfer
printing.

SYSVAR(21) returns the printhead density in dots/mm.
SYSVAR(22) returns the number of dots in the print-

head.
SYSVAR(23) returns 1 if a transfer ribbon is detected,

else 0.
SYSVAR(24) returns 1 if a power-up has been per-

formed since last SYSVAR(24), else 0.
SYSVAR(25) returns or selects the type of Centronics

communication on the parallel communi-
cation port "centronics:":
SYSVAR(25)=0 Standard type
SYSVAR(25)=1 IBM/Epson type
SYSVAR(25)=1 Classic type

SYSVAR(28) decides if the information on the position
of the paper vs the printhead should be
cleared or not when the printhead is lifted.

SYSVAR(32) returns the odometer value, i.e. the length
of paper that have been fed past the print-
head in kilometres.

• Parameter 13 is intended for use with the optional ribbon low
sensor kit.

• Parameters 14 and 15 are primarily intended for service pur-
poses.

• Parameters 16 and 17 are used in connection with transfer of
images from the host to the printer and are explained in chapter
14.3.

15.7 System Variables

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 137

Chapter 15 Printer Function Control

• Parameter 18 is used for returning or setting the printer's
verbosity level, i.e. the printer's response to received instructions
as explained in chapter 7.7.

• Parameter 19 is used for returning or selecting one of four types
of error messages, see chapter 16.1.

• Parameter 20 checks if the printer is printer is set up for direct
thermal printing or thermal transfer printing, which depends on
the choice of paper type in the Setup Mode, see the Technical
Manual.

• Parameters 21 and 22 are used to check the printhead in regard
of printhead density and number of dots respectively. Together
with parameter 20 and the VERSION$ function, see chapter
15.11, these parameters allows the program to identify different
printer models. Thereby it is possible to design programs that
will work in all EasyCoder printers.

• Parameter 23 checks the status of the ribbon end sensor in
thermal transfer printers.

• Parameter 24 is useful, when certain data, e.g. date and time
formats, are not generated as a part of the program execution.
Since such data are stored in the temporary memory, they will
be lost at power-up or reboot. Using SYSVAR(24), the printer
can be polled for power-ups, so lost data can be renewed.

• Parameter 25 is important to adapt the printer for the correct type
of Centronics communication. Default setting is IBM/Epson
type.

• Parameter 28 is intended for applications where high printout
accuracy is required, e.g. when using very short labels. If the
printhead is lifted, the paper will almost certainly be moved
somewhat and the printout on the labels between the printhead
and the LSS will not be positioned correctly. By chosing to clear
the paper feed information when the printhead is lifted and then
performing a TESTFEED to get new paper feed data, any such
errors will be avoided.

• Parameter 32 is mainly used by service technicians.

For detailed explanations, please refer to the UBI Fingerprint 7.11
Reference Manual.

Example showing how the error type is set from the host and the new
setting is read back:
10 INPUT "Error type: ", A%
20 SYSVAR(19)=A% (sets error type)
30 B%=SYSVAR(19) (reads error type)
40 PRINT "The error type is set to: "; B%
RUN

yields e.g.
Error type: 2
The error type is set to: 2

15.7 System
Variables, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 138

Chapter 15 Printer Function Control

In addition to the setup, four instructions can be used to check and
control the thermal printhead.

SYSVAR
Two parameters in the system variable SYSVAR allows you to
check the printhead, also see chapter 15.7:
SYSVAR(20) returns if the printer is set up for direct

thermal or transfer printing.
SYSVAR(21) returns the printhead density in dots/mm.

HEAD
The HEAD function allows you to identify possible faulty dots by
means of abnormal resistance values. This application is closely
connected to the SET FAULTYDOT and BARADJUST statements,
see below. Note that some printhead errors, e.g. cracked or dirty
dots, will not be detected by this function, since only the resistance
is measured.

SET FAULTY DOT
This statement is used to mark specified dots on the printhead as
faulty, either manually or automatically in connection with a HEAD
function. Then, using a BARADJUST statement (see below), you
can adjust the location of picket fence bar codes so the dots marked
as faulty will not affect the printing, i.e. the faulty dot(s) will be
situated between the bars.

You can also revoke all previous SET FAULTYDOT statements by
marking all dots as correct.

BARADJUST
This statement enables automatic horizontal relocation of picket
fence bar codes within specified limits. The software will keep
record of all dots marked as faulty (see SET FAULTY DOT above)
and relocate the bar code as to place the spaces between the bars in
line with the faulty dot(s). Thereby, it will be possible to use the
printer pending printhead replacement.

Note that the BARADJUST statement cannot be used for ladder bar
codes, stacked bar codes (e.g. Code 16K), bar codes with horizontal
lines (e.g. DUN-14), EAN/UPC bar codes, or two-dimensional bar
codes (e.g. PDF-417).

15.8 Printhead

☞ Setup Mode
Also see:
• Chapter 15.6
• Installation & Operation manual

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 139

Chapter 15 Printer Function Control

This example shows how a program can be made that checks the
printhead for faulty dots and warns the operator when a faulty dot
is encountered. Pending printhead replacement, the bar code is
repositioned to ensure continued readability. Such a program takes
a few seconds to execute (there may be more than a thousand dots
to check), so it is advisable either to restrict the dot check to the part
of the printhead that corresponds to the location of the bar code, or
to perform the test at startup only.
10 OPEN "console:" FOR OUTPUT AS 10
20 IF HEAD(-1)<>0 THEN GOTO 9000
30 BEEP:D1$="Printhead Error!":D2$="":GOSUB 2000
40 GOSUB 1000
50 BARADJUST 20,20
60 GOTO 9000
1000 FUNCTEST "HEAD",TMP$
1010 A$=":" : TMP%=INSTR(TMP$,A$)+1
1020 RETURN
1030 SET FAULTY DOT -1
1040 QMEAN%=HEAD(-7)
1050 QMIN%=QMEAN%*85\100
1060 QMAX%=QMEAN%*115\100
1070 FOR I%=0 TO WHEAD%-1
1080 QHEAD%=HEAD(I%)
1090 IF QHEAD%>QMAX% OR QHEAD%<QMIN% THEN SET FAULTY

DOT I%
1100 NEXT
2000 PRINT #10 : PRINT #10, LEFT$(D1$,16)
2010 PRINT #10, LEFT$(D2$,16);
2020 RETURN
9000 PRPOS 200,20
9010 BARTYPE "CODE39"
9020 BARRATIO 2,1 : BARMAG 2
9030 BARHEIGHT 150
9040 PRBAR "1234567890"
9050 PRINTFEED
9060 END

SYSVAR
A number of parameters in the system variable SYSVAR can be used
to check the transfer ribbon, also see chapter 15.7:
SYSVAR(13) returns the value of the optional ribbon

counter (some models only).
SYSVAR(20) returns if the printer is set up for direct

thermal or transfer printing.
SYSVAR(23) returns if a transfer ribbon is fitted or not.

15.8 Printhead, cont'd.

15.9 Transfer Ribbon

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 140

Chapter 15 Printer Function Control

15.10 Memory Test FUNCTEST
The FUNCTEST statement is used to perform the following tests
and place the result in a string variable:
• Test of a memory card (DOS-formatted or non DOS-formatted).
• Test of the printhead in regard of number of dots, head lifted or

possible errors.
• Test of the sysyems part of the printer's permanent memory

(“Kernel”).
• Test of ROM SIMMs.

Example using FUNCTEST on an EasyCoder 501 XP. The program
takes a few seconds to execute:
10 FUNCTEST "CARD", A$
20 FUNCTEST "HEAD", B$
30 FUNCTEST "KERNEL", C$
40 FUNCTEST "ROM1", D$
50 PRINT "CARDTEST:", A$
60 PRINT "HEADTEST:", B$
70 PRINT "KERNELTEST:", C$
80 PRINT "ROM1-TEST:", D$
RUN

yields e.g.:
CARDTEST: NO CARD
HEADTEST: HEAD OK,SIZE:1280 DOTS
KERNELTEST: 8E4791DC
ROM1-TEST: NO ROM

Ok

FUNCTEST$
The FUNCTEST$ function is very similar to the FUNCTEST
statement and is used for the same purposes. Due to the different
syntax, programming is more simple:
10 PRINT "CARDTEST:", FUNCTEST$ ("CARD")
20 PRINT "HEADTEST:", FUNCTEST$ ("HEAD")
30 PRINT "KERNELTEST:", FUNCTEST$ ("KERNEL")
40 PRINT "ROM1-TEST:", FUNCTEST$ ("ROM1")
RUN

yields e.g.:
CARDTEST: NO CARD
HEADTEST: HEAD OK,SIZE:1280 DOTS
KERNELTEST: 8E4791DC
ROM1-TEST: NO ROM

Ok

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 141

Chapter 15 Printer Function Control

15.11 Version Check VERSION$
The VERSION$ function returns one of three characteristics of the
printer:
VERSION$(0) returns the software version (e.g. “UBI

Fingerprint 7.11”)
VERSION$(0) returns the printer family (e.g. “501XP”).
VERSION$(0) returns the CPU board generation (e.g.

“hardware version 2.1”).

This instruction allows you to create programs that will work with
several different printer models. For example, you may use the
VERSION$ function to determine the type of printer and select the
appropriate one of several different sets of setup parameters.

Example (sets the setup according to the type of printer):
10 A$=VERSION$(1)
20 IF A$="501" THEN GOTO 1000
30 IF A$="601" THEN GOTO 2000
40 IF A$="501XP" THEN GOTO 3000
50 IF A$="601XP" THEN GOTO 4000
60
70
1000 SETUP "SETUP501.SYS"
1010 GOTO 60
2000 SETUP "SETUP601.SYS"
2010 GOTO 60
3000 SETUP "SETUP501XP.SYS"
3010 GOTO 60
4000 SETUP "SETUP601XP.SYS"
4010 GOTO 60

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 142

Chapter 16 Error Handling

16. Error-Handling
16.1 Standard

Error-Handling
UBI Fingerprint is intended to be as flexible as possible. Thus, there
are very few fixed error-handling facilities, but instead there are a
number of tools for designing error-handling routines according to
the demands of each application.

The following error-handling facilities are always available:

• Out-of-Media Detection
Provided the printhead is lowered, the firmware will check for
three possible errors when either the <Print > or <Feed> key on
the printer is pressed. If an error is detected, a message will
appear in the display:
- Error 1005 (Out of paper)
- Error 1031 (Next label not found)
- Error 1027 (Out of ribbon – thermal transfer printers only)
After the error has been attended to, the error message can be
cleared by pressing any of the keys.

• Syntax Check
Each program line or instruction that is received on the standard
IN channel will be checked for possible syntax errors before it
is accepted. Provided there is a working two-way communica-
tion1, possible syntax errors will be transmitted to the host on the
standard OUT channel, e.g. “Feature not implemented” or
“Font not found”.

• Execution Check
Any program or hardware error that stops the execution will be
reported on the standard OUT channel, provided there is a
working two-way communication1. In case of program errors,
the number of the line where the error occurred will also be
reported, e.g. “Field out of label in line 110”. After the error has
been corrected, the execution must be restarted by means of a
new RUN statement, unless there is a routine for dealing with the
error condition included in the program.

Error Messages
By means of the system variable SYSVAR(19), see chapter 15.7,
you can choose between four types of error messages as illustrated
by the following examples using error #19:
1. “Invalid font in line 10” (default)
2. “Error 19 in line 10: Invalid font”
3. “E19”
4. “Error 19 in line 10”1/. For a working two-way communication,

three conditions must be fulfilled:
• Serial communication
• Std IN channel = Std OUT channel
• Verbosity enabled.

Chapter 16

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 143

Chapter 16 Error Handling

TRON/TROFF
Large program can be difficult to grasp. If the program does not
work as expected, it may depend on some programming error that
prevents the program from being executed in the intended order.
The TRON (Trace On) statement allows you to trace the execution.
When the program is run, each line number will be returned on the
standard OUT channel in the order of execution, provided you have
a working two-way communication1.

TROFF (Trace Off) disables TRON.

In most application programs, it is useful to include some kind of
error-handler. Obviously, how comprehensive the error-handler
needs to be depends on the application and how independent from
the host the printer will work. In this chapter, we will explain the
general principles and the related instructions and in chapter 16.4,
you will find an example on how an error-handling program can be
composed.

ON ERROR GOTO...
This statement is described in more detail in the chapter 5.8. It is
used to branch the execution to a subroutine if any kind of error
occurs when a program is run. The major benefit is that the program
will not stop, but the error can be identified and dealt with. The
execution can then be resumed at an appropriate program line.

ERR
The ERR function returns the reference number of an error that has
occurred. The actual meaning of the numbers can be found in the
chapter “Error Messages” in the UBI Fingerprint 7.11 Reference
Manual.

ERL
The ERL function returns the number of the line on which an error
has occurred.

RESUME
This statement is used resume the execution after the error has been
taken care of in a subroutine. The execution can be resumed at the
statement where the error occurred, at the statement immediately
following the one where the error occurred, or at any other specified
line. Also see chapter 5.8.

16.3 Creating an
Error-Handling
Routine

1/. For a working two-way communication,
three conditions must be fulfilled:
• Serial communication
• Std IN channel = Std OUT channel
• Verbosity enabled.

16.2. Tracing
Programming
Errors

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 144

Chapter 16 Error Handling

3. Creating an
Error-Handling
Routine, cont'd.

Example:
The four instructions described above can be used to branch to a
subroutine, identify the error, branch to a secondary subroutine
where the error is cleared and resume the execution. In the example
only one error condition 1019 “Invalid Font” is taken care of, but
the same principles can be used for more errors. You can test the
example by either adding a valid font name or lifting the printhead
before running the program.
10 OPEN "console:" FOR OUTPUT AS 1
20 ON ERROR GOTO 1000
30 PRPOS 50,100
40 PRTXT "HELLO"
50 PRINTFEED
60 A%=TICKS+400
70 B%=TICKS
80 IF B%<A% THEN GOTO 70 ELSE GOTO 90
90 PRINT #1 : PRINT #1
100 END
1000 SOUND 880,50
1010 EFLAG%=ERR : ELINE%=ERL
1020 IF EFLAG%=1019 THEN GOTO 2000 ELSE GOTO 3000
2000 PRINT #1 : PRINT #1
2010 PRINT #1, "Font missing"
2020 PRINT #1, "in line ", ELINE%;
2030 FONT "SW030RSN" : MAG 2,2 : INVIMAGE
2040 RESUME
3000 PRINT #1 : PRINT #1
3010 PRINT #1, "Undefined error"
3020 PRINT #1, "Program Stops!";
3030 RESUME NEXT

PRSTAT
Another instruction that can be used in connection with error-
handling is the PRSTAT function. In addition to returning the
current position of the insertion point (see chapter 10.1), it can also
return the printer's status in regard several conditions, using a
logical operator:
IF PRSTAT (AND 0) Ok
IF PRSTAT (AND 1) Printhead lifted
IF PRSTAT (AND 2) Label not removed (LTS only)
IF PRSTAT (AND 4) Printer out of paper
IF PRSTAT (AND 8) Printer out of transfer ribbon
IF PRSTAT (AND 16) Printhead voltage too high
IF PRSTAT (AND 32) Printer is feeding

Multiple simultaneous errors are indicated by the sum of the values
for each error, e.g. if both the printhead is lifted (1) and the printer
is out paper (4) and ribbon (8), it can be detected by:
IF PRSTAT (AND 13)

☞ Logical Operators
Also see:
• Chapter 4.9

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 145

Chapter 16 Error Handling

ERRHAND.PRG Utility Program
The ERRHAND.PRG contains routines for handling errors, man-
aging the keyboard and display, and for printing. Use
ERRHAND.PRG to quickly get started with your programming.

By merging ERRHAND.PRG with your program, the latter can
gain access to ERRHAND's subroutines. Do not use the lines 10–
20 and 100000–1900200 in your program, since those line numbers
are used by ERRHAND.PRG.

Example:
NEW
LOAD "XXX.PRG"
MERGE "ROM:ERRHAND.PRG"
RUN

If you have more than one application program that requires error-
handling in your printer, you will save valuable memory space by
keeping ERRHAND.PRG stored separately and merging it with
the current program directly after loading, compared with merging
ERRHAND.PRG with each program. The approximate size of
ERRHAND.PRG is 4 kilobyte.

Variables and subroutines in ERRHAND.PRG that your program
can use, or which you can modify, are:

Variables:
• NORDIS1$ and NORDIS2$ at line 10 contain the main display

texts. You may replace them with your own text.
• DISP1$ and DISP2$ contain the actual text that will appear on

the printer's display on line 1 and 2 respectively.

Subroutines:
• At line 160,000

The errors which normally may occur during printing are taken
care of:
Error 1005 Out of paper
Error 1006 No field to print
Error 1022 Head lifted
Error 1027 Out of transfer ribbon
Error 1031 Next label not found

The subroutine shows the last error that occurred, if any, and the
line number where the error was detected. The information is
directed to your terminal. Called by the statement GOSUB
160000 .

• At line 200,000
Error-handling routines, which can be called from routines
where error may occur, e.g.:
IF EFLAG% < > 0 THEN GOSUB 200000

The error-handling routine can be modified to handle other
errors than those previously mentioned.

16.4 Error-Handling
Program

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 146

Chapter 16 Error Handling

ERRHAND.PRG Utility Program, cont'd.:

• At line 400,000
The FEED-routine executes a FORMFEED with error-checking.
Called by the statement GOSUB 400000.

• At line 500,000
The PRINT-routine executes a PRINTFEED with error-check-
ing. Called by the statement GOSUB 500000.

• At line 600,000
This subroutine clears the printer's display and makes the display
texts stored in the variables DISP1$ and DISP2$ appear on the
first and second line respectively in the display. Called by the
statement GOSUB 600000.

• At line 700,000
The Init routine initiates error-checking, opens the console for
output and displays the main display texts (NORDIS1$ and
NORDIS2$). It also sets up the some of the keys on the keyboard
(if any) and assigns subroutines to each key. Called by the
statement GOSUB 700000.

• At line 1,500,000
The <Pause> key (key No. 15) interrupts the program until the
same key is pressed a second time. Called by the statement
GOSUB 1500000.

• At line 1,700,000
Routine for the <Print > key (key No. 17), that calls subroutine
500,000. Called by the statement GOSUB 1700000.

• At line 1,800,000
Routine for the <Setup> key (key No. 18). Enters the Setup
Mode of the printer. Called by the statement GOSUB 1800000.

• At line 1,900,000
Routine for the <Feed> key (key No. 19), that calls subroutine
400,000. Called by the statement GOSUB 1900000.

For more information, refer to the complete listing that follows.

16.4 Error-Handling
Program, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 147

Chapter 16 Error Handling

10 PROGNO$ = "Ver. 1.2 92-01-10"
15 NORDIS1$ = "TEST PROGRAM" : NORDIS2$ = "VERSION 1.2"
20 GOSUB 700000 : 'Initiate
100000 'Error routine
100010 EFLAG% = ERR
100050 'PRINT EFLAG%:'Activate for debug
100060 LASTERROR% = EFLAG%
100200 RESUME NEXT
160000 'PRINT "Last error = ";LASTERROR%: 'Activate for debug
160050 'IF LASTERROR% <> 0 THEN PRINT "At line ";ERL
160100 LASTERROR% = 0
160200 RETURN
200000 'Error handling routine
200010 IF EFLAG% = 1006 THEN GOTO 200040:'Formfeed instead of print
200020 LED (1) ON : LED (0) OFF : BUSY
200030 SOUND 400, 10
200040 IF EFLAG% = 1031 THEN GOSUB 300000
200050 IF EFLAG% = 1005 THEN GOSUB 310000
200060 IF EFLAG% = 1006 THEN GOSUB 320000
200070 IF EFLAG% = 1022 THEN GOSUB 330000
200080 IF EFLAG% = 1027 THEN GOSUB 340000
200090 DISP1$ = NORDIS1$: DISP2$ = NORDIS2$
200100 GOSUB 600000
200110 LED (1) OFF : LED (0) ON : READY
200400 RETURN
300000 'Error 1031 Next label not found
300010 DISP1$ = "LABEL NOT FOUND"
300020 DISP2$ = "ERR NO. " + STR$ (ERR)
300030 GOSUB 600000
300040 EFLAG% = 0
300050 FORMFEED
300060 IF EFLAG% = 1031 THEN GOTO 300040
300200 RETURN
310000 'Error 1005 Out of paper
310010 DISP1$ = "OUT OF PAPER"
310020 DISP2$ = "ERR NO. " + STR$ (ERR)
310030 GOSUB 600000
310040 IF (PRSTAT AND 1)=0 THEN GOTO 310040:'Wait until head lifted
310050 EFLAG% = 0
310060 IF (PRSTAT AND 1) = 0 THEN FORMFEED ELSE GOTO 310060
310070 IF EFLAG% = 1005 THEN GOTO 310040
310080 IF EFLAG% = 1031 THEN GOSUB 300000
310200 RETURN
320000 'Error 1006 No field to print
320010 GOSUB 400000
320200 RETURN

16.4 Error-Handling
Program, cont'd.

Listing of ERRHAND.PRG Utility Program

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 148

Chapter 16 Error Handling

330000 'Error 1022 Head lifted
330010 DISP1$ = "HEAD LIFTED"
330020 DISP2$ = "ERR NO. " + STR$ (ERR)
330030 GOSUB 600000
330040 IF (PRSTAT AND 1) THEN GOTO 330040
330050 FORMFEED
330060 IF PCOMMAND% THEN GOSUB 500000
330200 RETURN
340000 'Error 1027 Out of transfer ribbon
340010 DISP1$ = "OUT OF RIBBON"
340020 DISP2$ = "ERR NO. " + STR$ (ERR)
340030 GOSUB 600000
340040 IF (PRSTAT AND 8) THEN GOTO 340040
340050 GOSUB 1500000
340200 IF PCOMMAND% THEN GOSUB 500000
349000 RETURN
400000 'Feed routine
400010 EFLAG% = 0
400020 FORMFEED
400200 IF EFLAG% <> 0 THEN GOSUB 200000
400300 RETURN
500000 'Print routine
500010 EFLAG% = 0
500020 PCOMMAND% = 1
500030 PRINTFEED
500040 IF EFLAG% <> 0 THEN GOSUB 200000
500100 PCOMMAND% = 0
500300 RETURN
600000 'Display handler
600010 PRINT # 10
600020 PRINT # 10
600030 PRINT # 10, DISP1$
600040 PRINT # 10, DISP2$;
600200 RETURN
700000 'Init routine
700010 ON ERROR GOTO 100000
700020 OPEN "console:" FOR OUTPUT AS # 10
700030 DISP1$ = NORDIS1$: DISP2$ = NORDIS2$
700040 GOSUB 600000
700100 ON KEY (15) GOSUB 1500000 : 'PAUSE
700110 ON KEY (17) GOSUB 1700000 : 'PRINT
700120 ON KEY (18) GOSUB 1800000 : 'SETUP
700130 ON KEY (19) GOSUB 1900000 : 'FEED
700140 KEY (15) ON
700150 KEY (17) ON
700160 KEY (18) ON
700170 KEY (19) ON
700230 LED (0) ON
700240 LED (1) OFF

16.4 Error-Handling
Program, cont'd.

Listing of ERRHAND.PRG Utility Program, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 149

Chapter 16 Error Handling

700300 PAUSE% = 0
700500 RETURN
1500000 'Pause function
1500010 KEY (15) ON
1500020 PAUSE% = PAUSE% XOR 1
1500030 BUSY : LED (0) OFF
1500040 DISP1$ = "Press <PAUSE>" : DISP2$ = "to continue"
1500050 GOSUB 600000
1500060 IF PAUSE% = 0 THEN GOTO 1500100
1500070 SOUND 131, 2
1500080 SOUND 30000, 20
1500090 IF PAUSE% THEN GOTO 1500070
1500100 READY : LED (0) ON
1500110 DISP1$ = NORDIS1$: DISP2$ = NORDIS2$
1500120 GOSUB 600000
1502000 RETURN
1700000 'Printkey
1700010 KEY (17) OFF
1700020 GOSUB 500000
1700030 KEY (17) ON
1700200 RETURN
1800000 'Setup key
1800010 KEY (18) OFF
1800020 LED (0) OFF
1800030 BUSY
1800040 SETUP
1800050 READY
1800060 LED (0) ON
1800080 KEY (18) ON
1800090 DISP1$ = NORDIS1$: DISP2$ = NORDIS2$
1800100 GOSUB 600000
1800200 RETURN
1900000 'Feed key
1900010 KEY (19) OFF
1900020 GOSUB 400000
1900030 KEY (19) ON
1900200 RETURN

16.4 Error-Handling
Program, cont'd.

Listing of ERRHAND.PRG Utility Program, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 150

Chapter 16 Error Handling

16.4 Error-Handling
Program, cont'd.

Extensions to ERRHAND.PRG Utility Program
The following subroutines are not included in ERRHAND.PRG,
but may be added manually to stop new input via the printer's
keyboard while a subroutine is executed:
• Turn on all keys after having completed a subroutine by issuing

the statement GOSUB 800000.
800000 'Turn all keys on
800010 I% = 0
800020 IF I% > 21 THEN GOTO 800060
800030 KEY (I%) ON
800040 I% = I% + 1
800050 GOTO 800020
800060 RETURN

• Turn off all keys before entering a subroutine by issuing the
statement GOSUB 900000.
900000 'Turn all keys off
900010 I% = 0
900020 IF I% > 21 THEN GOTO 900060
900030 KEY (I%) OFF
900040 I% = I% + 1
900050 GOTO 900020
900060 RETURN

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 151

Chapter 17 Reference Lists

17. Reference Lists

ABS 9.2 Returning the absolute value of a numeric expression.
ACTLEN 11.4 Returning the length of the most recently executed PRINTFEED,

FORMFEED or TESTFEED statement.
ALIGN (AN) 10.1 Specifying which part (anchor point) of a text, bar code field, image

field, line or box will be positioned at the insertion point.
ASC 9.2 Returning the decimal ASCII value of the first character in a string

expression.
BARADJUST 15.8 Enabling/disabling automatic adjustment of bar code position in order

to avoid faulty printhead dots.
BARFONT (BF) 10.3 Specifying fonts for the printing of bar code interpretation.
BARFONT (BF) ON/OFF 10.3 Enabling/disabling the printing of bar code interpretation.
BARHEIGHT (BH) 10.3 Specifying the height of a bar code.
BARMAG (BM) 10.3 Specifying the magnification in regard of width of the bars in a bar

code.
BARRATIO (BR) 10.3 Specifying the ratio between the wide and the narrow bars in a bar

code.
BARSET 10.3 Specifying a bar code and setting additional parameters to complex bar

codes.
BARTYPE (BT) 10.3 Specifying the type of bar code.
BEEP 15.4 Ordering the printer to emit a beep.
BREAK 5.12 Specifying a break interrupt character separately for the keyboard and

each serial communication channel.
BREAK ON/OFF 5.12 Enabling/disabling break interrupt separately for the keyboard and each

serial communication channel.
BUSY 7.7 Ordering a busy signal, e.g. XOFF, CTS/RTS or PE, to be transmitted

from the printer on the specified communication channel.
CHDIR 6.1 Specifying the current directory.
CHECKSUM 6.9 Calculating the checksum of a range of program lines in connection

with the transfer of programs.
CHR$ 9.2 Returning the readable character from a decimal ASCII code.
CLEANFEED 11.1 Running the printer's feed mechanism.
CLEAR 6.1 Clearing strings, variables and arrays to free memory space.
CLL 11.5 Partial or complete clearing of the print image buffer.
CLOSE 6.4, 7.3-7.6, 8.3-8.5 Closing one or several files and/or devices for input/output.
COM ERROR ON/OFF 7.8 Enabling/disabling error handling on the specified communication

channel.
COMBUF$ 7.8 Reading the data in the buffer of the specified communication channel.
COMSET 7.8 Setting the parameters for background reception of data to the buffer

of a specified communication channel.
COMSET OFF 7.8 Turning off background data reception and emptying the buffer of the

specified communication channel.
COMSET ON 7.8 Emptying the buffer and turning on background data reception on the

specified communication channel.
COMSTAT 7.8 Reading the status of the buffer of the specified communication channel.
COPY 5.13, 6.2-6.4, 8.5 Copying files.
CSUM 6.10 Calculating the checksum of an array of strings.
CUT 11.3 Activating an optional paper cutting device.
CUT ON/OFF 11.3 Enabling/disabling automatic cutting after PRINTFEED execution and

optionally adjusting the paper feed before and after the cutting.
DATE$ 9.3, 15.5 Setting or returning the current date.
DATEADD$ 9.3 Returning a new date after a number of days have been added to, or

subtracted from, the current date or optionally a specified date.
DATEDIFF 9.3 Returning the difference between two dates as a number of days.
DELETE 5.4, 8.1 Deleting one or several consecutive program lines from the printer's

working memory.

17.1 Instructions in Alphabetical Order

Instruction See chapter Purpose

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 152

Chapter 17 Reference Lists

DEVICES 4.10 Returning the names of all devices to the standard OUT channel.
DIM 6.10 Specifying the dimensions of an array.
DIR 10.1 Specifying the print direction.
END 5.4 Ending the execution of the current program or subroutine and closing

all OPENed files and devices.
EOF 7.4 Checking for an end-of-file condition.
ERL 16.3 Returning the number of the line on which an error condition has

occurred.
ERR 16.3 Returning the code number of an error that has occurred.
FIELD 7.5, 8.4 Creating a single-record buffer for a random file and dividing the buffer

into fields to which string variables are assigned.
FIELDNO 11.5 Getting the current field number for partial clearing of the print buffer

by a CLL statement.
FILE& LOAD 6.6, 12.2 Reception and storing of binary files in the printer's memory.
FILES 6.2, 8.1, 14.4 Listing the files stored in one of the printer's directories to the standard

OUT channel.
FONT (FT) 10.2 Selecting a scalabele TrueType or TrueDoc single-byte font for the

printing of the subsequent PRTXT statements.
FONTD 10.2 Selecting a scalabele TrueType or TrueDoc double-byte font for the

printing of the subsequent PRTXT statements.
FONTNAME$ 12.4 Returning the names of the fonts stored in the printer's memory.
FONTS 8.1, 12.4 Returning the names of all fonts stored in the printer's memory to the

standard OUT channel.
FOR...TO...NEXT 5.9 Creating a loop in the program execution, where a counter is incremented

or decremented until a specified value is reached.
FORMAT 6.1 Formatting the printer's permanent memory, or formatting a SRAM-

type memory card to MS-DOS format.
FORMAT DATE$ 9.3 Specifying the format of the string returned by DATE$("F") and

DATEADD$(...,"F") instructions.
FORMAT TIME$ 9.3 Specifying the format of the string returned by TIME$("F") and

TIMEADD$(...,"F") instructions.
FORMFEED (FF) 11.1 Activating the paper feed mechanism in order to feed out or pull back

a certain length of the paper web.
FRE 6.1 Returning the number of free bytes in the printer's temporary memory.
FUNCTEST 15.10 Performing various hardware tests.
FUNCTEST$ 15.10 Performing various hardware tests.
GET 7.5 Reading a record from a random file to a random buffer.
GOSUB 5.7 Branching to a subroutine.
GOTO 5.6-5.7 Branching unconditionally to a specified line.
HEAD 15.8 Returning the result of a thermal printhead check.
IF..THEN...[ELSE] 5.5 Conditional execution controlled by the result of a numeric expression.
IMAGE LOAD 6.5, 14.3 Receiving, converting and installing image and font files.
IMAGENAME$ 14.4 Returning the names of the images stored in the printer's memory.
IMAGES 8.1 Returning the names of all images stored in the printer's memory to the

standard OUT channel.
IMMEDIATE ON/OFF 5.4 Enabling/disabling the immediate mode of UBI Fingerprint in

connection with program editing without line numbers.
INKEY$ 7.2 Reading the first character in the receive buffer of the standard IN

channel.
INPUT (IP) 7.2 Receiving input data via the standard IN channel during the execution

of a program.
INPUT# 7.3-7.6, 15.1 Reading a string of data from an OPENed device or sequential file.
INPUT$ 7.2-7.6, 15.1 Returning a string of data, limited in regard of number of characters,

from the standard IN channel, or optionally from an OPENed file or
device.

INSTR 9.2 Searching a specified string for a certain character, or sequence of
characters, and returning its position in relation to the start of the string.

Instruction See chapter Purpose

17.1 Instructions in Alphabetical Order, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 153

Chapter 17 Reference Lists

INVIMAGE (II) 10.2, 10.4 Inversing the printing of text and images from “black-on-white” to
“white-on-black.

KEY BEEP 15.1 Resetting the frequency and duration of the sound produced by the
beeper, when any key on the printer's keyboard is pressed down.

KEY ON/OFF 15.1 Enabling/disabling a specified key on the printer's front panel to be
used in connection with an ON KEY...GOSUB statement.

KEYBMAP$ 15.1 Returning or setting the keyboard map table.
KILL 5.13, 6.3-6.4 Deleting a file from the printer's memory or from a DOS-formatted

SRAM memory card inserted in the memory card adapter.
LAYOUT 10.7 Handling of layout files.
LBLCOND 11.1 Overriding the paper feed setup.
LED ON/OFF 15.3 Turning a specified LED control lamp on or off.
LEFT$ 9.2 Returning a specified number of characters from a given string starting

from the extreme left side of the string, i.e. from the start.
LEN 9.2 Returning the number of character positions in a string.
LET 4.7 Assigning the value of an expression to a variable.
LINE INPUT 7.2 Assigning an entire line, including punctuation marks, from the

standard IN channel to a single string variable.
LINE INPUT# 7.3-7.6, 15.1 Assigning an entire line, including punctuation marks, from a sequential

file or a device to a single string variable.
LIST 5.4, 6.3 8.1 Listing the current program completely or partially, or listing all

variables, to the standard OUT channel.
LOAD 5.13, 6.3 Loading a copy of a program, residing in the current directory or in

another specified directory, into the printer's working memory.
LOC 6.4, 7.4-7.5, 7.8, 8.3-8.5 Returning the current position in an OPENed file or the status of the

buffers in an OPENed communication channel.
LOF 6.4, 7.4-7.5, 7.8, 8.3-8.5 Returning the length in bytes of an OPENed sequential or random file

or returning the status of the buffers in an OPENed communication
channel.

LSET 8.4 Placing data left-justified into a field in a random file buffer.
LTS& ON/OFF 11.3 Enabling or disabling the label taken sensor.
MAG 10.2, 10.4 Magnifying a font, barfont or image up to four times separately in regard

of height and width.
MAP 9.1 Changing the ASCII value of a character when received on the

standard IN channel, or optionally on another specified communication
channel.

MERGE 6.3 Merging a program in the printer's current directory, or optionally in
another specified directory, with the program currently residing in the
printer's working memory.

MID$ 9.2 Returning a specified part of a string.
NAME DATE$ 9.3 Formatting the month parameter in return strings of DATE$("F")

and DATEADD$(...,"F") .
NAME WEEKDAY$ 9.3 Formatting the day parameter in return strings of WEEKDAY$.
NASC 9.1 Selecting a single-byte character set.
NASCD 9.1 Selecting a double-byte character set according to the Unicode standard.
NEW 5.4, 6.3 Clearing the printer's working memory in order to allow a new program

to be created.
NORIMAGE (NI) 10.2, 10.5 Returning to normal printing after an INVIMAGE statement has been

issued.
ON BREAK GOSUB 5.8, 5.12 Branching to a subroutine, when a break interrupt instruction is received.
ON COMSET GOSUB 5.8, 7.8 Branching to a subroutine, when the background reception of data on

the specified communication channel is interrupted.
ON ERROR GOTO 5.8, 16.3 Branching to an error-handling subroutine when an error occurs.
ON GOSUB 5.8 Conditional branching to one or several subroutines.
ON GOTO 5.8 Conditional branching to one of several lines.
ON KEY GOSUB 5.8, 15.1 Branching to a subroutine when a specified key on the printer's front

panel is activated.

Instruction See chapter Purpose

17.1 Instructions in Alphabetical Order, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 154

Chapter 17 Reference Lists

ON/OFF LINE 7.7 Controlling the SELECT signal on the Centronics communication
channel.

OPEN 6.4, 7.3-7.6, 8.3-8.5, 15.2 Opening a file or device – or creating a new file – for input, output or
append, allocating a buffer and specifying the mode of access.

OPTIMIZE "BATCH" ON/OFF 11.5 Enabling/disabling optimizing for batch printing.
PCX2BMP 6.5, 14.3 Converting and intalling image files in .PCX format.
PORTIN 7.10 Reading the status of a port on the Industrial Interface Board.
PORTOUT ON/OFF 7.10 Setting one of four relay port or one of eight optical ports on an Industrial

Interface Board to either on or off.
PRBAR (PB) 10.3 Providing input data to a bar code.
PRBOX (PX) 10.5 Creating a box.
PRIMAGE (PM) 10.4 Selecting an image stored in the printer's memory.
PRINT (?) 8.1 Printing data to the standard OUT channel.
PRINT KEY ON/OFF 11.3 Enabling/disabling printing of a label by pressing the Print key.
PRINT# 8.3, 8.5, 15.2 Printing of data to a specified OPENed device or sequential file.
PRINTFEED (PF) 11.3 Printing and feeding out one or a specified number of labels, tickets,

tags or portions of strip, according to the printer's setup.
PRINTONE 8.1 Printing characters specified by their ASCII values to the standard OUT

channel.
PRINTONE# 8.3, 8.5 Printing characters specified by their ASCII values to a device or

sequential file.
PRLINE (PL) 10.6 Creating a line.
PRPOS (PP) 10.1 Specifying the insertion point for a line of text, a bar code, an image, a

box, or a line.
PRSTAT 10.1, 16.3 Returning the printer's current status or, optionally, the current position

of the insertion point.
PRTXT (PT) 10.2 Providing the input data for a text field, i.e. a line of text.
PUT 8.4 Writing a given record from the random buffer to a given random file.
RANDOM 9.4 Generating a random integer within a specified interval.
RANDOMIZE 9.4 Reseeding the random number generator, optionally with a specified

value.
READY 7.7 Ordering ready signal, e.g. XON, CTS/RTS or PE, to be transmitted

from the printer on the specified communication channel.
REBOOT 5.14 Restarting the printer.
REDIRECT OUT 6.4, 8.2 Redirecting the output data to a created file.
REM (') Adding headlines and explanations to a program without including them

in the execution.
REMOVE IMAGE 12.2-12.3, 14.4 Removing a specified image from the printer's memory.
RENUM 5.4 Renumbering the lines of the program currently residing in the printer's

working memory.
RESUME 5.8, 16.3 Resuming program execution after an error-handling subroutine has

been executed.
RETURN 5.7 Returning to the main program after having branched to a subroutine

because of a GOSUB statement.
RIGHT$ 9.2 Returning a specified number of characters from a given string starting

from the extreme right side of the string, i.e. from the end.
RSET 8.4 Placing data right-justified into a field in a random file buffer.
RUN 5.11, 6.3 Starting the execution of a program.
SAVE 5.13, 6.3 Saving a file in the printer's memory or optionally in a DOS-formatted

memory card.
SET FAULTY DOT 15.8 Marking one or several dots on the printhead as faulty, or marking all

faulty dots as correct.
SETSTDIO 7.1 Selecting standard IN and OUT communication channel.
SETUP 15.6 Entering the printer's Setup Mode, changing the setup by means of a

setup file or setup string, or creating a setup file containing the printer's
current setup values.

SGN 9.2 Returning the sign (positive, zero or negative) of a specified numeric
expression.

Instruction See chapter Purpose

17.1 Instructions in Alphabetical Order, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 155

Chapter 17 Reference Lists

SORT 6.10 Sorting a one-dimensional array.
SOUND 15.4 Making the printer's beeper produce a sound specified in regard of

frequency and duration.
SPACE$ 9.2 Returning a specified number of space characters.
SPLIT 6.10 Splitting a string into an array according to the position of a specified

separator character and returning the number of elements in the array.
STORE IMAGE 14.3 Setting up parameters for storing an image in the printer's memory.
STORE INPUT 14.3 Receiving and storing protocol frames of image data in the printer's

memory.
STORE OFF 14.3 Terminating the storing of an image and resetting the storing parameters.
STR$ 9.2 Returning the string representation of a numeric expression.
STRING$ 9.2 Repeatedly returning the character of a specified ASCII value, or the

first character in a specified string
SYSVAR 7.7, 14.3, 15.7-15.9, 16.1 Reading or setting various system variables.
TESTFEED 11.1 Adjusting the label stop sensor while perfoming a number of formfeeds.
TICKS 9.3 Returning the time that has passed since the last power-up in the printer,

expressed in number of “Ticks” (1 Tick = 0.01 seconds).
TIME$ 9.3, 15.5 Setting or returning the current time.
TIMEADD$ 9.3 Returning a new time after a number of seconds have been added to, or

subtracted from, the current time or optionally a specified time.
TIMEDIFF 9.3 Returning the difference in number of seconds between two specified

moments of time in number of seconds.
TRANSFER KERMIT 6.8 Transferring of data files using Kermit communication protocol.
TRANSFER STATUS 6.8 Checking last TRANSFER KERMIT operation.
TRANSFER$ 6.4 Executing a transfer from source to destination as specified by a

TRANSFERSET statement.
TRANSFERSET 6.4 Entering setup for the TRANSFER$ function.
TRON/TROFF 16.2 Enabling/disabling tracing of the program execution.
VAL 9.2 Returning the numeric representation of a string expression.
VERBON/VERBOFF 7.7 Specifying the verbosity level of the communication from the printer

on the standard OUT channel (serial communication only).
VERSION$ 15.11 Returning the version of the firmware, printer family, or type of CPU

board
WEEKDAY 9.3 Returning the weekday of a specified date.
WEEKDAY$ 9.3 Returning the name of the weekday from a specified date.
WEEKNUMBER 9.3 Returning the number of the week for a specified date.
WHILE...WEND 5.9 Executing a series of statements in a loop providing a given condition

is true.

Instruction See chapter Purpose

17.1 Instructions in Alphabetical Order, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 156

Chapter 17 Reference Lists

SETUP AND PREFERENCES
General UBI Fingerprint Control:
CHDIR<scon> Stmt Change current directory
MAP[<nexp>,]<nexp>,<nexp> Stmt Remapping
NASC<nexp> Stmt Select single-byte character set
NASCD<nexp> Stmt Select double-byte character set
REBOOT Stmt Restart printer
SETUP [[WRITE<sexp>] | [<sexp>]| [<sexp>]] Stmt Printer setup
SYSVAR(<nexp>) Array Read or set various system variables

Setting the Clock/Calendar:
DATE$=<sexp> Var Set the date
TIME$=<sexp> Var Set the time

OPERATOR INTERFACE
Keyboard Setup:
KEY(<nexp>)ON|OFF Stmt Enable/disable key on printer's keyboard
ON KEY(<nexp>)GOSUB<ncon>|<line label> Stmt Key-initiated branching
KEY BEEP<nexp>,<nexp> Stmt Set frequency and duration of key response
KEYBMAP$(<nexp>)=<sexp> Var Set the keyboard map table

Output to Display:
OPEN "console:" FOR OUTPUT AS[#]<nexp> Stmt Open display for output
PRINT#<nexp>[,<<nexp>|<sexp>>[<,|;><<nexp|<sexp>>...][;]] Stmt Print data to display
CLOSE [#]<nexp> Stmt Close display for output

LED Control Lamps:
LED<nexp>ON|OFF Stmt Turn LED on or off

Audible Signals:
BEEP Stmt Emit a beep
SOUND<nexp>,<nexp> Stmt Produce sound

Breaking Program Execution:
BREAK<nexp>,<nexp> Stmt Specify break interrupt character
BREAK <nexp> ON|OFF Stmt Enable/disable break interrupt
ON BREAK<nexp>GOSUB<ncon>|<line label> Stmt Branching at break interrupt

PRINTER CHECKOUT AND CONTROL
Keyboard:
<svar> = KEYBMAP$(<nexp>) Var Read keyboard mapping

Memory:
CLEAR Stmt Clear strings, variables and arrays
FORMAT<sexp>[,<nexp>[,<nexp>]][,A] Stmt Format "c:" memory or "card1:"
FRE(<<nexp>|<sexp>>) Func Return number of free bytes in "tmp:"
FUNCTEST<sexp>,<svar> Stmt Testing the hardware
FUNCTEST$(<sexp>) Func Testing the hardware
KILL<sexp> Stmt Delete file
REMOVE IMAGE<sexp> Stmt Remove image from memory

Odometer:
SYSVAR(32) Array Read kilometre counter

Printhead:
BARADJUST<nexp>,<nexp> Stmt Enable/disable auto bar code repositioning
HEAD(<nexp>) Func Checking printhead dots
FUNCTEST<sexp>,<svar> Stmt Checking printhead
FUNCTEST$(<sexp>) Func Checking the printhead
SET FAULTY DOT<nexp>[,<nexp>...] Stmt Marking dots as faulty for BARADJUST
SYSVAR(21|22) Array Read printhead density or number of dots

Transfer Ribbon:
SYSVAR(13|20|23) Array Read counter, mode or ribbon end sensor

17.2 Instructions by Field of Application

Instruction Abbr. Type Purpose

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 157

Chapter 17 Reference Lists

PROGRAMMING:
Managing Programs and Files:
CHECKSUM(<nexp>,<nexp>) Func Calculate checksum at program transfer
COPY<sexp>[,<sexp>] Stmt Copy file
KILL<sexp> Stmt Delete file
LOAD<scon> Stmt Load program
MERGE<scon> Stmt Merge programs
NEW Stm Clear the working memory
SAVE<scon>[,P|L] Stmt Save program

Listings:
DEVICES Stmt List devices to standard I/O channel
FILES[<sexp>][,A] Stmt List files to standard I/O channel
FONTNAME$(<nexp>) Func Return names of fonts in printer's memory
FONTS Stmt List all fontnames to standard I/O channel
IMAGENAME$(<nexp>) Func Return names of images in printer's memory
IMAGES Stmt List all imagenames to standard I/O channel
LIST[[<ncon>[- <ncon>]]|,V] Stmt List current program or all variables to std I/O
VERSION$[(<nexp>)] Func Returns F/W or H/W version or printer model

Program Editing and Execution:
DELETE<ncon>[-<ncon>] Stmt Delete program lines
END Stmt Terminate program execution
IMMEDIATE ON|OFF Stmt Start/stop writing program w/o line numbers
LIST[[<ncon>[- <ncon>]]|,V] Stmt List current program or all variables to std I/O
NEW Stmt Clear the working memory
REM<remark> ' Stmt Remark
RENUM[<ncon>][,[<ncon>][,<ncon>]] Stmt Renumber program lines
RUN[<<scon>|<ncon>>] Stmt Execute program
SAVE<scon>[,P|L] Stmt Save program

Data Manipulation:
ABS(<nexp>) Func Return the absolute value of an expression
ASC(<sexp>) Func Return ASCII code for 1:st char. in string
CHR$(<nexp>) Func Convert ASCII code
INSTR([<nexp>,]<sexp>,<sexp>] Func Return position of character in string
LEFT$(<sexp>,<nexp>) Func Return characters from left side of string
LEN(<sexp>) Func Return number of characters in string
[LET]<<nvar>=<nexp>>|<<svar>=<sexp>> Stmt Assign a value to a variable
MID$(<sexp>,<nexp>[,<nexp>]) Func Return part of string
RANDOM (<nexp>,<nexp>) Func Generate a random integer
RANDOMIZE[<nexp>] Stmt Reseed random number generator
RIGHT$(<sexp>,<nexp>) Func Return characters from right side of string
SGN(<nexp>) Func Return sign of numeric expression
SPACE$(<nexp>) Func Return specified number of space characters
STR$(<nexp>) Func Return string representation of num. expr.
STRING$(<nexp>,<<nexp>|<sexp>>) Func Return a number of repeated characters
VAL(<sexp>) Func Return numeric representation of string expr.

Branching and Conditionals:
FOR<nvar>=<nexp>TO<nexp>[STEP<nexp>)]NEXT[<nvar>] Stmt Creating a program loop
GOSUB<ncon>|<line label> Stmt Branch to subroutine
GOTO<ncon>|<line label> Stmt Unconditional branching
IF<nexp>[,]THEN<stmt>[ELSE<stmt>] Stmt Conditional execution
ON <nexp>GOSUB<ncon>|<line label>[,<ncon>|<line label>...] Stmt Cond. branching to one of many subroutines
ON <nexp>GOTO<ncon>|<line label>[,<ncon>|<line label>...] Stmt Conditional branching to one of several lines
RETURN[<ncon>|<line label>] Stmt Return from subroutine
WHILE<nexp>↵ <stmt>↵ [...<stmt>]↵ WEND Stmt Conditional execution of loop of statements

17.2 Instructions by Field of Application, cont'd.

Instruction Abbr. Type Purpose

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 158

Chapter 17 Reference Lists

PROGRAMMING, cont'd:
Arrays:
CSUM<ncon>,<svar>,<nvar> Stmt Calculate checksum of array of strings
DIM<<nvar>|<svar>>(<nexp>[,<nexp>...])...[,<<nvar>|<svar>>(nexp>[,<nexp>...])] Stmt Set array dimensions
SORT<<nvar>|<svar>>,<nexp>,<nexp>,<nexp> Stmt Sort a one-dimensional array
SPLIT(<sexp>,<sexp>,<nexp>) Func Split a string into an array

Clock/Calendar Facilities:
<svar>=DATE$[("F")] Var Read the date
<svar>=TIME$[("F")] Var Read the time
DATEADD$[(<sexp>,]<nexp>[,"F"]) Func Add days to a date
TIMEADD$[(<sexp>,]<nexp>[,"F"]) Func Add seconds to a time
DATEDIFF(<sexp>,<sexp>) Func Calculate difference between dates
TIMEDIFF(<sexp>,<sexp>) Func Calculate difference between times
FORMAT DATE$<sexp> Stmt Specify date format
FORMAT TIME$<sexp> Stmt Specify time format
NAME DATE$<nexp>,<sexp> Stmt Specify names of the months
NAME WEEKDAY$<nexp>,<sexp> Stmt Specify names of the weekdays
WEEKDAY(<sexp>) Func Return weekday of a date
WEEKDAY$(<sexp>) Func Return name of the weekday for a date
WEEKNUMBER(<sexp>) Func Return weeknumber for a date
TICKS Func Return time passed since startup

Error-handling:
ERL Func Return number of line with error
ERR Func Return error code number
ON ERROR GOTO<ncon>|<line label> Stmt Branch at error
PRSTAT[(<nexp>)] Func Returns printer status or current X/Y position
RESUME[<<ncon>|<line label>|<NEXT>|<0>>] Stmt Resume program execution after error
SYSVAR(19) Array Set or return type of error message
TRON Stmt Enable tracing of program execution
TROFF Stmt Disable tracing of program execution

COMMUNICATION:
Communication Control:
BUSY[<nexp>] Stmt Send busy signal on communication channel
OFF LINE<nexp> Stmt SELECT signal low (Centronics)
ON LINE<nexp> Stmt SELECT signal high (Centronics)
READY[<nexp>] Stmt Send ready signal on communication channel
REDIRECT OUT[<sexp>] Stmt Redirect output data to file
SETSTDIO<nexp>[,<nexp>] Stmt Set standard I/O channels
SYSVAR(18) Array Set verbosity level
SYSVAR(25) Array Select type of Centronics communication
VERBOFF Stmt Verbosity off
VERBON Stmt Verbosity on

Background Communication:
COM ERROR<nexp>ON|OFF Stmt Enable/disable error handling
COMBUF$(<nexp>) Func Read communication buffer
COMSET<nexp>,<sexp>,<sexp>,<sexp>,<sexp>,<nexp> Stmt Set communication parameters
COMSET<nexp>ON|OFF Stmt Turn on/off background data reception
COMSTAT(<nexp>) Func Read communication buffer status
ON COMSET<nexp>GOSUB<nexp>|<line label> Stmt Branch at background comm. interrupt

Instruction Abbr. Type Purpose

17.2 Instructions by Field of Application, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 159

Chapter 17 Reference Lists

FILE TRANSFER:
Binary Files:
FILE& LOAD[<nexp>,]<sexp>,<nexp>[,<nexp>] Stmt Receive and store binary files
TRANSFER K[ERMIT]<sexp>[,<sexp>[,<sexp>[,<sexp>]]] Stmt Data transfer using Kermit protocol
TRANSFER S[TATUS]<nvar>,<svar> Stmt Check last TRANSFER KERMIT execution

Data Files:
TRANSFER$(<nexp>) Func Execute transfer and set time-out
TRANSFERSET[#]<nexp>,[#]<nexp>,<sexp>[,<nexp>] Stmt Enter setup for file transfer using TRANSFER$

Font Files:
FILE& LOAD[<nexp>,]<sexp>,<nexp>[,<nexp>] Stmt Receive and store font files (installed after restart)
IMAGE LOAD[<nexp>,]<sexp>,<nexp>,<sexp>[,<nexp>] Stmt Receive, convert and install fonts
TRANSFER K[ERMIT]<sexp>[,<sexp>[,<sexp>[,<sexp>]]] Stmt Transfer, convert and install fonts
TRANSFER S[TATUS]<nvar>,<svar> Stmt Check last TRANSFER KERMIT execution

Image Files:
IMAGE LOAD[<nexp>,]<sexp>,<nexp>,<sexp>[,<nexp>] Stmt Receive, convert and install .PCX images
RUN "pcx2bmp [-i] [-v] <scon>[<scon>]" – Convert and install image files in .PCX format
STORE IMAGE[RLL][KILL]<sexp>,<nexp>,<nexp>,[<nexp>],<sexp> Stmt Set up image storage parameters
STORE INPUT<nexp>[,<nexp>] Stmt Receiving and storing image data
STORE OFF Stmt End storing of image data
SYSVAR(16|17) Array Read no. of bytes/frames received

INPUT TO UBI FINGERPRINT
Input from Standard IN Channel:
INKEY$ Func Read 1:st character from std IN channel
INPUT[<scon><;|,>]<<nvar>|<svar>>[,<<nvar>|<svar>>...] IP Stmt Input to variables
INPUT$(<nexp>[,<nexp>]) Func Input, limited no. of characters
LINE INPUT[<scon>;]<svar> Stmt Input, entire line

Input from Host on Any Channel:
CLOSE[[#]<nexp>[,[#]<nexp>...]] Stmt Close device
INPUT#<nexp>,<<nvar>|<svar>>[,<<nvar>|<svar>...] Stmt Input to variables
INPUT$(<nexp>[,<nexp>]) Func Input, limited no. of characters
LINE INPUT#<nexp>,<svar> Stmt Input, entire line
LOC(<nexp>) Func Remaining no. of characters in receive buffer
LOF(<nexp>) Func Remaining free space in receive buffer
OPEN<sexp>FOR INPUT AS[#]<nexp> Stmt Open device

Input from Sequential File:
CLOSE[[#]<nexp>[,[#]<nexp>...]] Stmt Close file
EOF(<nexp>) Func End of file
INPUT#<nexp>,<<nvar>|<svar>>[,<<nvar>|<svar>...] Stmt Input to variables
INPUT$(<nexp>[,<nexp>]) Func Input, limited no. of characters
LINE INPUT#<nexp>,<svar> Stmt Input, entire line
LOC(<nexp>) Func Return current position in file
LOF(<nexp>) Func Return length of file
OPEN<sexp>FOR INPUT AS[#]<nexp> Stmt Open file

Input from Random File:
CLOSE[[#]<nexp>[,[#]<nexp>...]] Stmt Close file
FIELD[#]<nexp>,<nexp>AS<svar>[,<nexp>AS<svar>...] Stmt Create a buffer for a random file
GET[#]<nexp>,<nexp> Stmt Read rec. from random file to random buffer
LOC(<nexp>) Func Return current position in file or buffer
LOF(<nexp>) Func Return length of file
OPEN<sexp>AS[#]<nexp>[LEN=<nexp>] Stmt Open a random file

Input from Printer's Keyboard:
CLOSE [#]<nexp> Stmt Close keyboard for input
INPUT#<nexp>,<<nvar>|<svar>>[,<<nvar>|<svar>...] Stmt Input to variables
INPUT$(<nexp>[,<nexp>]) Func Input, limited no. of characters
LINE INPUT#<nexp>,<svar> Stmt Input , entire line
OPEN"console:" FOR INPUT AS[#]<nexp> Stmt Open keyboard for input

Instruction Abbr. Type Purpose

17.2 Instructions by Field of Application, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 160

Chapter 17 Reference Lists

Instruction Abbr. Type Purpose
INPUT TO UBI FINGERPRINT, cont'd:
Industrial Interface:
PORTIN(<nexp>) Func Reading status of a specified port
PORTOUT(<nexp>)ON|OFF Stmt Set the relay on a specified port

OUTPUT FROM UBI FINGERPRINT
Output to Standard OUT Channel :
PRINT[<<nexp>|<sexp>>[<,|;><<nexp>|<sexp>>...][;]] ? Stmt Print data to standard I/O channel
PRINTONE[<nexp>[<,|;><nexp>...][;]] Stmt Print ASCII characters to std I/O channel

Output to Any Communication Channel:
CLOSE[[#]<nexp>[,[#]<nexp>...]] Stmt Close device
PRINT#<nexp>[,<<nexp>|<sexp>>[<,|;><<nexp|<sexp>>...][;]] Stmt Print data to device
PRINTONE#<nexp>[,<nexp>[<,|;><nexp>...][;]] Stmt Print ASCII characters to device
LOC(<nexp>) Func Remaining free bytes in transmitter buffer
LOF(<nexp>) Func Remaining no. of char. in transmitter buffer
OPEN<sexp>[FOR <OUTPUT|APPEND>]AS[#]<nexp> Stmt Open device

Output to a Sequential File:
CLOSE[[#]<nexp>[,[#]<nexp>...]] Stmt Close file
PRINT#<nexp>[,<<nexp>|<sexp>>[<,|;><<nexp|<sexp>>...][;]] Stmt Print data to sequential file
PRINTONE#<nexp>[,<nexp>[<,|;><nexp>...][;]] Stmt Print ASCII characters to sequential file
LOC(<nexp>) Func Current position in file
LOF(<nexp>) Func Length of file
OPEN<sexp>[FOR <OUTPUT|APPEND>]AS[#]<nexp> Stmt Open file

Output to Random File:
CLOSE[[#]<nexp>[,[#]<nexp>...]] Stmt Close file
FIELD[#]<nexp>,<nexp>AS<svar>[,<nexp>AS<svar>...] Stmt Create a buffer for a random file
LOC(<nexp>) Func Current position in file
LOF(<nexp>) Func Length of file
LSET<svar>=<sexp> Stmt Place data in random file buffer (left justified)
PUT[#]<nexp>,<nexp> Stmt Write rec. from random buffer to random file
OPEN<sexp>AS[#]<nexp>[LEN=<nexp>] Stmt Open a random file
RSET<svar>=<sexp> Stmt Place data in random file buffer (right justified)

FORMATTING AND PRINTING
General Formatting Instructions:
ALIGN<nexp> AN Stmt Alignment
DIR<nexp> Stmt Select print direction
PRPOS<nexp>,<nexp> PP Stmt Set coordinates for insertion point
LAYOUT[F,]<sexp>,<sexp>,<svar>|<sexp>,<nvar>|<sexp> Stmt Creating and using layout files

Text Printing:
INVIMAGE II Stmt Inverse image printing
MAG<nexp>,<nexp> Stmt Magnification of font (obsolete)
NORIMAGE NI Stmt Return to normal image printing
FONT<sexp>[,<nexp>[,<nexp>]] FT Stmt Select single-byte font
FONTD<sexp>[,<nexp>[,<nexp>]] Stmt Select double-byte font
PRTXT<<nexp>|<sexp>>[;<<nexp>|<sexp>>...][;] PT Stmt Input data to text field

Bar Code Printing:
BARFONT[#<ncon>,]<sexp>[,nexp>[,<nexp>[,<nexp>[,nexp>[,nexp]]]]][ON] BF Stmt Specify bar code interpretation fonts
BARFONT ON BF ON Stmt Enable bar code Interpretation
BARFONT OFF BF OFF Stmt Disable bar code interpretation
BARHEIGHT<nexp> BH Stmt Bar code height
BARMAG<nexp> BM Stmt Bar code magnification
BARRATIO<nexp>,<nexp> BR Stmt Wide/narrow bar ratio
BARSET[#<ncon>,][<sexp>[,<nexp>[,<nexp>[,<nexp>[,<nexp>[,<nexp>
 [,<nexp>[,<nexp>[,<nexp>[,<nexp>[,<nexp>]]]]]]]]]]] Stmt Specifying complex bar codes
BARTYPE<sexp> BT Stmt Bar code type
MAG<nexp>,<nexp> Stmt Magnification of barfont (obsolete)
PRBAR<<sexp>|<nexp>> PB Stmt Input data to bar code field

17.2 Instructions by Field of Application, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 161

Chapter 17 Reference Lists

FORMATTING AND PRINTING, cont'd:
Image and Graphics Printing:
INVIMAGE II Stmt Inverse image printing
MAG<nexp>,<nexp> Stmt Magnification of image
NORIMAGE NI Stmt Return to normal image printing
PRBOX<nexp>,<nexp>,<nexp> PX Stmt Create a box
PRIMAGE<sexp> PM Stmt Select a preprogrammed image
PRLINE<nexp>,<nexp> PL Stmt Create a line

Printing and Paper Feed Control:
ACTLEN Func Read length of last paper feed
CLEANFEED<nexp> Stmt Running the printer's feed mechanism
CLL[<nexp>] Stmt Clear print buffer
CUT Stmt Activate optional cutting device
CUT <nexp> ON|OFF Stmt Enable/disable automatic cut-off
FIELDNO Func Get current field number for CLL
FORMFEED[<nexp>] FF Stmt Paper feed
LBLCOND<nexp>,<nexp> Stmt Overriding paper feed setup
LTS& ON|OFF Stmt Enable/disable label taken sensor
OPTIMIZE "BATCH" ON|OFF Stmt Enable/disable optimizing for batch printing
PRINT KEY ON|OFF Stmt Enable/disable PRINTFEED using Print key
PRINTFEED<nexp> PF Stmt Print and feed out label or batch of labels
SYSVAR(28) Array Erase paper feed data
TESTFEED Stmt Auto adjustment of label stop sensor

Instruction Abbr. Type Purpose

17.2 Instructions by Field of Application, cont'd.

UBI Fingerprint 7.11 – Programmer's Guide Ed. 1 162

Chapter 17 Reference ListsNotes

	1. Introduction
	1.1 Contents
	1.2 Preface
	1.3 News in UBI Fingerprint 7.11

	2. Getting Started
	 2.1 Computer Connection
	2.2 Check Paper Supply
	2.3 Turn On the Printer
	2.4 UBI Shell Startup Program
	2.5 No Startup Program
	2.6 Custom-Made Startup Program
	2.7 Breaking a Startup Program
	2.8 Communications Test

	3. Creating a Simple Label
	3.1 Introduction
	3.2 Printing a Box
	3.3 Printing an Image
	3.4 Printing a Bar Code
	3.5 Printing Human Readables
	3.6 Printing Text
	3.7 Listing the Program
	3.8 Changing a Program Line
	3.9 Saving the Program
	3.10 Error Handling
	3.11 Renumbering Lines
	3.12 Merging Programs
	3.13 Using the Print Key

	4. Terminology and Syntax
	4.1 Lines
	4.2 Statements
	4.3 Functions
	4.4 Other Instructions
	4.5 Expressions
	4.6 Constants
	4.7 Variables
	4.8 Keyword List
	4.9 Operators
	4.10 Devices

	5. UBI Fingerprint Programming
	5.1 Introduction
	5.2 Editing Methods
	5.3 Immediate Mode
	5.4 Programming Mode
	5.5 Conditional Instructions
	5.6 Unconditional Branching
	5.7 Branching to Subroutines
	5.8 Conditional Branching
	5.9 Loops
	5.10 Program Structure
	5.11 Execution
	5.12 Breaking the Execution
	5.13 Saving the Program
	5.14 Rebooting the Printer

	6. File System
	6.1 Printer's Memory
	6.2 Files
	6.3 Program Files
	6.4 Data Files
	6.5 Image Files
	6.6 Font Files
	6.7 Transferring Text Files
	6.8 Transferring Binary Files using Kermit
	6.9 Transferring Files Between Printers
	6.10 Arrays

	7. Input to UBI Fingerprint
	7.1 Standard I/O Channel
	7.2 Input from Host (std IN Channel only)
	7.3 Input from Host (Any Channel)
	7.4 Input from a Sequential File
	7.5 Input from a Random File
	7.6 Input from Printer's Keyboard
	7.7 Communication Control
	7.8 Background Communication
	7.9 RS 422 Communication
	7.10 External Equipment

	8. Output from UBI Fingerprint
	8.1 Output to Std OUT Channel
	8.2 Redirecting Output from a Std OUT Channel to File
	8.3 Output and Append to Sequential Files
	8.4 Output to Random Files
	8.5 Output to Communication Channels
	8.6 Output to Display

	9. Data Handling
	9.1 Preprocessing Input Data
	9.2 Input Data Conversion
	9.3 Date and Time
	9.4 Random Number Generation

	10. Label Design
	10.1 Creating a Layout
	10.2 Text Field
	10.3 Bar Code Field
	10.4 Image Field
	10.5 Box Field
	10.6 Line Field
	10.7 Layout Files

	11. Printing Control
	11.1 Paper Feed
	11.2 Printing
	11.3 Length of Last Feed Operation
	11.4 Batch Printing

	12. Fonts
	12.1 Font Types
	12.2 Single-byte Fonts
	12.3 Double-byte Fonts
	12.4 Font Direction, Size and Slant
	12.5 Standard Fonts
	12.6 Old Font Names
	12.7 Adding Fonts
	12.8 Listing Fonts
	12.9 Removing Fonts
	12.10 Font Aliases

	13. Bar Codes
	13.1 Standard Bar Codes
	13.2 Setup Bar Codes

	14. IMAGES
	14.1 Images vs Image Files
	14.2 Standard Images
	14.3 Downloading Images Files
	14.4 Listing Images
	14.5 Removing Images

	15. Printer Function Control
	15.1 Keyboard
	15.2 Display
	15.3 LED Control Lamps
	15.4 Buzzer
	15.5 Clock/Calendar
	15.6 Printer Setup
	15.7 System Variables
	15.8 Printhead
	15.9 Transfer Ribbon
	15.10 Memory Test
	15.11 Version Check

	16. Error-Handling
	16.1 Standard Error-Handling
	16.2. Tracing Programming Errors
	16.3 Creating an Errpr-Handling Routine
	16.4 Error-Handling Program

	17. Reference Lists
	17.1 Instructions in Alphabetical Order
	17.2 Instructions by Field of Application

