1. Introduction
1.1 Contents

1. Introduction

2. Getting Started

3. Creating a Simple Label

4. Terminology and Syntax

UBI Fingerprint 7.11
Programmer's Guide
Edition 1, February 1998
Part No. 1-960454-00

Chapter 1

1.1 CONENES.....oiiiiiiiiiieiee e 1
1.2 Preface.......coooiiiiiiii i 6
1.3 Newsin UBI FIngerprint 7.11........cccoviiiiieiniiiiee e 7
2.1 Computer CONNECLION........cuiiiiiiiiie ettt 8
2.2 Check Paper SUPPIY........uueeeiiiiiiaeaiiiiiie e 8
2.3 TUurm ONthe PriNer......cooiiiiei e 9
2.4 UBI Shell Startup Program............coooiiiiiiiiiieieeeeeeiiiiiieeee e 9
25 NO Startup Program..........ccccuirmiiieeieeeeeeieiee e 9
2.6 Custom-Made Startup Program...........ccccovevvereriiiieneennniieee e 9
2.7 Breaking a Startup Programl...........ccoevvveeeeeiniineees e 10
2.8 CommUNICAION TESL.....cciiiiiiiiieiiieie et 11
I B [011 7o o B Tox 1[0 o FO PP OTPRPT 12
3.2 PrINtNG @ BOX....uviiiiiiiiiiiie ittt 12
3.3 Printing @ IMAgE.....cooiiiiiiiieiiiiie et 13
3.4 Printing @ Bar COUe.........cuuiiiiiiiiiieie e 13
3.5 Printing Human Readables..............cccoiiiiiiiiiiiee, 13
3.6 PrHNtING TOXL...euieiiiiiiiiieiie e 14
3.7 Listing the Program...........cccuuueiiiiiiieei e 14
3.8 Changing a Program LiNe..........cccueeieiiiiieieeiiiieee i 14
3.9 Saving the Programl.........cueeeeiiiiiieeeiiiieee et 15
3.10 Error HaNdliNg.......oouveeeeiiiiiiiee et 15
3.11 Renumbering LINES........cooiiiiiiiiiieeeeee et 15
3.12 Merging Programs...........eeeeieiaaaainiiiiiiiiie et e e e e e 16
3.13 USINg the PriNt KEY......coiiiiiiieiiiiiiie e 16
o 1T SRR 17
4.2 SEAEMENTS.......oi it 18
4.3 FUNCHONS....cotiiiiiiiiiie ettt s s 18
4.4 Other INSIIUCTIONS.......eviiiiiiiiee e 18
A5 EXPrESSIONS...cciiiiiitiiieeiittitee e ettt e e e e sttt e e e e st e e e s st e e e e b e e e ennes 18
4.6 CONSIANES.....eiiiiiieeeiii it 19
A7 Vanables.......c..ooiiii 19
4.8 KEYWOId LISt....eeeeiiiiiiiieiiiiiiiiie ettt 20
4.9 OPEIALOIS. ...uutueeueiiiaaaaa e e e e e e e e e e e e et et et e ee e e rebe bbb s e e e e e e eeeaeeas 21
o ArithmetiC OPEIatOrS.........coouuiiiiieiieeee e 21
* Relational Operators..........cccovuveeeeiiiiiiie s 21
o LOQiCal OPEratorS.......ccoiiiuriiieiiiiiiee et 21
410 DBVICES. ..ttt e ittt ettt st 22
cont'd

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 1

Chapter 1 Introduction

1.1 Contents, contd.

5. UBI Fingerprint Programming 51
5.2

53
54

55
5.6
5.7
5.8
59
5.10
511
5.12
5.13

514

6. File System 6.1

6.2

6.3
6.4

6.5
6.6
6.7
6.8
6.9
6.10

INEFOAUCTION. ... 24
Editing MethOdS:.......ccoiiiiiiiiie e 24
* Line-by Line Method (non-intelligent terminal)...................... 24
» Copy & Paste Method (Windows; Notepad/Terminal).......... 25
» Send Text Method (Windows; Text file via Terminal)........... 25
ImMmediate MOE.........ouvviiiiiii e 25
Programming MOGE.........ccooiuiiiiiiiiiiiee e 27
* Programming with Line NUMDEerS.........cccccerriiiiiiiiiiiieeieeen, 28
* Programming without Line NUMDbErS...........cccceeeiiiniiiiiiiinnen. 29
e Programming INSTrUCIONS.........cooiieiiiiiiiiiiiieeeeee e 30
Conditional INSIrUCLIONS.........coiiuuiiiiiiiiiee e 31
Unconditional Branching...........cccceeeeiiiieeiiiiiieeiieiee e 32
Branching to SUDIOULINES..........cuueiiiiiiiiiie e 33
Conditional BranChing............eeeeiiiiaiiiiiiiiiieeeeee e 34
(0T] oL PP PO T TP TR 38
Program SHUCIULE..........oeviiiiiiiiiiii e 40
EXECULION. ...ceiiiiiiiiie et 41
Breaking EXECULION.........ocuveiiiiiiiiiee e 42
Saving the Program..........ocueeeioiiiiiieiiieieee e 43
® SAVING IN PINTEL.....ciiiiiiiiiiiee e 43
e Naming the Program............cocccuiiiiiiiiiieeaee e 43
* Protecting the Program............cccuveiiiiiiiiiiiiiiiieieee e 44
» Saving Without Line NUMbBEIS.........cccooiiiviiiiiie i 44
* MaKiNg ChanQeS.......oiuuiiieeiiiiiie et 45
® MaKING 8 COPY.ttiiiiiiiiiieiiiiiiee ettt 45
e Renaming @ Program.........cccuuuiiiiiiiiiieeeee e 45
» Saving in Non DOS-formatted Memory Cards.............cccc..... 45
* Creating a Startup Program.............ceeeeeeeeiniiiiiiiiieeeeeee e 46
Rebooting the PriNter...........cooiiiiiiii e a7
PrINLEr'S MEMOIY......coiiiiiiiiie it 48
* Permanent memory ("rom:" and "C:).....cccociiiiiiiiini 48
o Temporary Memory ("tMP:")...coooiiiiiieeeeeee e 49
» DOS-formatted Memory Cards ("cardl:?)......ccccccoeviiiiunirnnnen. 49
* Non DOS-formatted Memory Cards ("rom:2)........ccccovcuveeeenns 50
» Other Memory Devices ("storage.).......ccccovuvreeeriiiieeeeininnenn 50
o CUITENE DIFECIOMNY. ...ttt 50
e Checking Free Memory.........cceeiiiiiiiiiiiiiiiieeeeeee e 50
* Providing More Free MemOLY.........ccueuueaiiniiiiiiiiiieeeee e 50
* Formatting the Permanent Memory.........ccccceeeeviniiviiieeeeeenenn. 51
* Formatting SRAM Memory Cards.........cccceeeeiniveeeeninieeee e 51
FlES e ————— 51
® FiIE TYPES. .ttt 51
* File NAMES......oiiiiiii s 51
® LIStING FlES. ... 51
Program FilES.........oooieiii e 52
o Program File TYPES.......uuiiiiiiiieiiiiiee et 52
® INSHTUCHIONS. ...eeiiiii it 52
Data FileS......iiiiiee e 53
o Data File TYPES ..ot 53
@ INSIIUCTIONS. ...eeeiiiiteee e 53
IMAGE FlES....coiiii e 53
OUtliNg FONE FIIES.....ceiiiiiiiie e 54
Transferring TeXt FileS. ... 54
Transferring Binary Files using Kermit..............cccccoevviiienennnnne 54
Transferring Files Between Printers........ccccccvviiiiiiiiieeeneeeenn, 55
AITAYS. .. e e e e e e e et et et e e 56
cont'd

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 2

Chapter 1 Introduction

1.1 Contents, contd.

7. Input to UBI Fingerprint

8. Output from UBI Fingerrprint

9. Data Handling

10. Label Design

11. Printing Control

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

8.1

8.3
8.4
8.5
8.6

9.1
9.2
9.3
9.4

10.1

10.2
10.3
10.4
10.5
10.6
10.7

11

11.2
11.3
114

Standard /O Channel............cooviiiiiiii e 59
Input From Host (Std IN Channel only)............occoceeivniieeeennne. 59
Input From Host (Any Channel)..........cccccooviiiiiinieees 59
Input From a Sequential File............cooiiiiiiiiic i, 60
Input From a Random File...........ooociiiiiiiiieeeee, 63
Input From Printer's Keyboard..............cceeeeiiiiiiiiiiiiiiieeee, 64
Communication CONEIOL..........ooreiieiiiiiiee e 66
Background COmMmMUNICALION..........cuvvieeiriiiiiee e 68
RS 422 COMMUNICALIAN.......uuvviiiiieiee e e e 72
External EQUIPMENT.c.ueviiiiiiiie et 73
o Industrial INnterface............ccoovviiie i 73
Output to Std Out Channel...........ccccooviiiiiiiiiiii e 74
Redirecting Output from Std Out Channel to File.................... 76
Output and Append to Sequential FileS..............cooecvivveeereennnn. 77
Output to RANAOM FlES.......ccooiiiiiieiiiiie e 79
Output to Communication Channels............cccccceeiiiniiiiiiinneen. 82
OULPUL 1O DISPIAY.....eeeeeeieeeeeiieiiieeee e 82
Preprocessing INPUE DALa.cooveveieiiiiiiiieiiieee e 83
INPUt Data CONVEISION.........ciiiiiiiiiee ittt e e 86
Date and TiME......c.euviiiieiieee e e e e e e e rer e e e e e e e e s e nnnnes 89
Random Number Generation.............cccoovvvvereeininere e 91
Creating @ LaYOUL...........uueiiiiiieieaaieeiiiee e 92
* FIeld TYPES e 92
L O o o B PP UPP 93
B ©0 o] o [P> (=TSSR 93
* UNitS Of MEASUIE.......iiiiie et 93
* INSErtioN POINL........oeiiiiiiiiiiee e 93
© AlGNMENT.....eeie e 94
L B (=T 1 1 S REERRR 95
o LaYOUL FlES. ..o 96
» Checking Current POSItION.............eveiiiiiiiieiiiiice e 96
TEXEFIRIA. ... 97
Bar Code Field..........ovviiiiiiiiee e 99
IMage Field.........coooiiiiii e 101
20)1 =1 o S 102
a1 1= (o S 103
LaYOUL FIlES......eeeieie it 104
® INTOAUCHION. ...ttt 104
e Creating a Layout File..........ccccooiiiiiiiiiiiee e 104
 Creating a Logotype Name File..........ccooiiiiiiiiiiiiis 107
* Creating a Data File or Array.........cccooccvveeeiiniiiene e 108
* Creating an Error File and Array.........c.occveeeeiiiieeeeiiiieeeeens 109
* Using the Files in a LAYOUT statement.............ccccccvvveeennn. 110
Paper FEEA.ouiiiiiiiiiii e 111
PHNTING. e 113
Length of Last Feed Operation...........ccccccevvvveeeiiniieeee e, 115
Batch Printing.........coooueieiiiiiiiie e 115
cont'd

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 3

Chapter 1 Introduction

1.1 Contents, contd.

12. Fonts

13. Bar Codes

14. Images

15. Printer Function Control

16. Error Handling

17. Reference Lists

121
12.2
12.3
124
12.5
12.6
12.7
12.8
12.9
12.10

131
13.2

141
14.2
14.3
14.4
145

151

15.2

15.3
154
155
15.6

15.7
15.8
15.9
15.10
15.11

16.1
16.2

16.3
16.4

171
17.2

FONE TYPES. ..ttt 117
Single-byte FONS..........uuuiiiiiiiiieii e 117
Double-byte FONtS.........eviiiiiiiiiie e 117
Font Direction, Size and Slant..............ccoeevveiiiiiiiieeeeeieeee e 117
StanNdard FONS.........oouiiiiiiiiiie e 118
Old FONtNAMES......ceieiieiiiieee et 118
AddING FONS....coiiiiiiii e 118
LISHNG FONTS......eiiiiiieiieie e 119
REMOVING FONES.....ccoiiiiiiiiiiiiiie e 119
FONE AIASES....ceeiiiieiee e 119
Standard Bar COUES.........coivriiiiiiiiiiee e 120
SEtUP Bar COUBS.....euuveiiiiiieeeeei ittt 120
Images vs Image FilesS ... 121
Standard IMAgES.ccovuiiiiiiiiiiee e 121
Downloading Image FileS..........cuvviiiiiiiiiiiniee e 121
LiStiNG IMAGES....ccoeeiiiiitiie et 122
RemMOVING IMAJES........oooiiiiiiiieeie e 122
KEYDOAIT.....ciiiiiiiiii e 123
* Controlling the Printer in the Setup and Immediate Mades 123

* Enabling the KeYS......ccoiiiiiiieii e 123
o Key Id. NUMDEIS.....ccoiiiiiiiiiiiieeeeee et 124
o Key-initiated Branching...........ccccooeeiiiiiiiiiiiiiiiie i 125
* Audible Key ReSPONSE.......cooiiiiiiiiiiiiiiieeeee e 125
* Input from Printer's Keyboard............ccccovviiiiiiniiiiieiiieeen, 125

* Remapping the Keyboard.............ccoccvviiiiiiiii e, 126
DISPIAY. ...ttt 129
o OULPUL L0 DISPIaY.......ccceeeiieiieeie et 129
® CUISOr CONIOL....cceiiiiiiieeeiitiee e 130
LED Control LamMpPS......coooiiiiiiiiiiiieeeee e 132
BUZZEN... e e 133
CloCK/CaleNdAL.........c.uviieiiiiiiie e 133
PrINTEr SEUP....ceii it 134
* Reading Current SEtUP.........coeviiivivieiiiiee e 134
e Creating @ Setup File.........oooiiiiiiiieeeeen 134
» Changing the Setup using a Setup Eile...........cccccceeeeiininnis 135

» Changing the Setup using a Setup String............cccceeeennnne 135
System Variables............ooiiii 136
PriNthEad.......coooiiiiiiiii e 138
Transfer RIDDON...........oovii 139
MEMOIY TESE... e 140
Version CheCKc.ocviiviiiiiiec e 141
Standard Error-Handling.............ccooiiieiiiiiiieniice e 142
® EITOr MESSAQES......coiiiiiiiieieieeeeeeeee e 142
Tracing Programming ErrQrS..........coooiiiiiiiiiieeeeeiiiie 143
Creating an Error-Handling ROUtINE...............oooviiiiiiieeieeennnn, 143
Error-handling program...........ooooiiiiiiiiieiie e 145
* ERRHAND.PRG Utility Program...........ccccoeevveeeinniiieeeenne, 145

* Listing of ERRHAND.PRG Utility Program...............cccceue... 147

» Extensions to ERRHAND.PRG Utility Program.................. 150
UBI Fingerprint instructions in alphabetical order.................. 151
UBI Fingerprint instructions sorted by application of use...... 156

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 4

Chapter 1 Introduction

Information in this manual is subject to change without prior notice and does not represent a commitmer
on the part of Intermec Printer AB.

© Copyright Intermec PTC AB, 1998. All rights reserved. Published in Sweden.

EasyCoder, Fingerprint, LabelShop and UBI are trademarks of Intermec Technologies Corp.
Apple is a registered trademark of Apple Computer, Inc.

Bitstream is a registered trademark of Bitstream, Inc.

Centronics is a registered trademark of Centronics Data Computer Corp.

Crosstalk and DCA are registered trademarks of Digital Communications Associates, Inc.
IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Macintosh and TrueType are registered trademarks of Apple Computer, Inc.

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation.

OS-2 is a registered trademark of International Business Machines Corporation.

TrueDoc is a trademark of Bitstream, Inc.

Unix is a registered trademark of Novell-USG.

Windows is a trademark of Microsoft Corporation.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 5

Chapter 1 Introduction

12

Preface

UBI Fingerprint 7.11 is a new version of a well-known Basic-
inspired, printer-resident programming language that has been
developed for use with computer-controlled direct thermal and
thermal transfer printers manufactured by United Barcode Indus-
tries (UBI). UBI Fingerprint 7.xx works only with the new genera-
tion of RISC-processor based printers, starting with EasyCoder 501
XP and EasyCoder 601 XP.

The UBI Fingerprint software is an easy-to-use intelligent pro-
gramming tool for label formatting and printer customizing, which
allows you to design your own label formats and write your own
printer application software.

You may easily create a printer program by yourself that exactly
fulfils your own unique requirements. Improvements or changes
due to new demands can be implemented quickly and without vast
expenses.

The new UBI Direct Protocol 7.11 is used for combining variable
input data from a host with predefined label layouts.

This tutorial manual describes how to start up UBI Fingerprint
programming and how to use the various instructions in their proper
context. Programming instructions are explained only briefly. The
UBI Direct Protocol 7.11 is described in a separate Programmer's
Guide.

The UBI Fingerprink 7.11 Reference Manual contains detailed
information on all programming instructions in the UBI Fingerprint
programming language in alphabetical order. It also contains other
types of program-related information that are common for all
printer models from UBI that uses the corresponding version of
UBI Fingerprint.

All information needed by the operator, like how to run the printer,
how to load the paper supply and how to maintain the printer, can
be found in the User's Guide and Installation & Operation manual
for the printer model in question.

The Installation & Operation manual for each printer model also
provides information on installation, setup, density, paper specifi-
cations, positioning, and other technical data, which are specific for
the printer model in question.

UBI Fingerprint 7.11 also supports:
* UBI Shell 4.1
Startup program for EasyCoder 501 XP/601 XP printers
» UBI LabelShop
Various versions
* UBI Windows Driver
For using an EasyCoder printer with most programs run under
MS Windows 3.11 and Windows 95.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 6

Chapter 1 Introduction

1.3 News in UBI Fingerprint 7.11

UBI Fingerprint 7.11 is the first publicly documented version of the new generation of UBI Fingerprint
developed for use in the EasyCoder XP series.

General changes:

* New CPU board architecture with FLASH memory.

* New printout handling with two large image buffers and no banding.

» Communication port "uart3:" and "rs485:" no longer supported.

* New font handling with scalable fonts and font aliases (see FONT stmt).
* Double-byte fonts support (see FONTD and NASCD stmts).

» Some new devices added, others deleted (see Devices stmt).

* 11 new character sets added (see NASC stmt).

* Previous optional bar codes now standard.

* Printer setup via bar code wand introduced.

Compatibility:

» Font names for bitmap fonts translate to corresponding scalable font.
* Device "ram:" translates to "c:".
* Deleted commands will be ignored — no error conditions occur.

Deleted Instructions:
PRINTFEED NOT

REMOVE FONT

Has no meaning in UBI Fingerprint 7.11.
Has no meaning in UBI Fingerprint 7.11 (bitmap fonts no longer used).

RIBBON SAVE ON/OFF No ribbon save device exists for UBI Fingerprint 7.11 compatible printers.

STORE

Modified instructions:
BARFONT

CHDIR
DEVICES

FILES

FONT

FORMAT

FRE

FUNCTEST
FUNCTEST$
IMAGELOAD
NASC

OPTIMIZE ON/OFF
PORTIN

PORTOUT ON/OFF
SETUP

SYSVAR
TESTFEED
VERSION$

New Instructions:

FONTD
NASCD

Obsolete. Replaced by STORE INPUT.

Supports Unicoded TrueDoc and TrueType fonts with scaling and slanting.
Supports new memory devices
Removed: "uart3:", "cutter:", "ram:", "prel:", "rs485:", "msg:", "par:",
"bscrypt:", "null:* and "ind:". New: "c:", "lock:", "storage:", "tmp:", "wand:".
Possible to include/exclude system files.
Supports Unicoded TrueDoc and TrueType fonts with scaling and slanting.
Possible to include/exclude system files.
Now returns the number of free bytes in the temporary memory.
Parameter RAM deleted, parameter KERNEL added.
Parameter RAM deleted, parameter KERNEL added.
Supports downloading of both images and fonts.
11 new single-byte character sets can be selected.
Optimizing strategies “PRINT” and “STRING” no longer supported.
Now supports 8 in ports and 12 out ports.
Now supports 12 out ports.
Some setup parameters changed, deleted or added.
Some system variables deleted or added.
TESTFEED is now the only method for adjusting the label stop sensor.
Now returns somewhat different information.

Selects double-byte fonts.
Selects double-byte character sets.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 7

Chapter 2

2. Getting Started

21 Computer The UBI Fingerprint firmware is stored in a Flash SIMM on the
. printer's CPU board. No floppy disks or operative system, like e.qg.
Connection MS-DQOS, is required. The printer only needs to be connected to a
mains supply.

Unless the printer is fitted with a program that allows it to be used
independently (“stand-alone”), you must also connect it to some
kind of device, which can transmit characters in ASCII format. It

can be anything from a non-intelligent terminal to a mainframe
computer system.

For programming the printer, you need a computer with a screen
and an alphanumeric keyboard, that provides two-way serial com-
munication, preferably using RS 232C, (e.g. an IBM PC or similar
computer with Microsoft Windows 3.3)1 Use e.g. Windows
Notepad or Write for writing programs and Windows Terminal for
communication with the printer.

Connect the printer and host as described in the Installation &
Operation manual for the printer model in question. Ifthe printer has
several communication ports, it is recommended to use the serial
port "uartl:" for programming, which by default is set up for RS
232C. Other optional serial communication ports could also be
used.

1/, Although most examples in this manual tis possible to set up the printer's communication protocol to fit the
assumes a host running MS Window&10St computer. However, until you have become familiar with the
3.11, other operative systems can also b&JBI Fingerprint concept, it may be easier to adapt the host to the

used, e.g. Windows 95, Windows NTprinter's default setup parameters:
DOS, Macintosh OS, OS-2 etc, as long

you have a terminal program that can|Default communication setup on "uartl:"

communicate with the printer and some s Baud rate: 9600

kind of word processing program. « Character length: 8
_ * Parity: None

580Cgen;r.nun/catlon Setup « No. of stop bits: 1

. Chapte.r 156 * Flow control: XON/XOFF to and from host

« Installation & Operation manual * New line: CRI/LF (Carriage Return + Line Feed)

2.2 Check Paper Check that the printer has an ample supply of paper or other

S | receiving material and, when applicable, of thermal transfer ribbon.
upply Refer to the Operator's Guide or the User's Manual for loading
instructions.

[J Paper and Ribbon Load

Also see:

+ User's Guide

« Installation & Operation manual

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 8

Chapter 2 Getting Started

2.3 Turn On the
Printer

2.4 UBI Shell Startup
Program

[J UBI Shell Startup Program
Also see:
* Installation & Operation manual

2.5 No Startup
Program

2.6 Custom-Made
Startup Program

Checkthatthe printhead is lowered. Turn onthe main switch, which
isfitted on the printer's rear plate and check that the “Power” control
lamp comes on. Then watch the display window. What happens
next depends on what kind of startup file there is in the printer.

WARNING!
Make sure that any paper cutter is locked in closed position.
The cutter may be activated when the power is turned on!

After a short while, when the printer has performed certain self-
diagnostic tests and loaded the startup program, a countdown menu
will usually be displayed:

ENTER=UBI SHELL
5sec. v.4.x

The countdown menus indicate that the printer is fitted with one of
the UBI Shell startup programs. Wait until the 5 seconds countdown
is completed. Then, by default, this menu will be displayed:

UBI Fingerprint
7.XX

This or similar messages indicates that the printer has entered the
immediate mode of UBI Fingerprint, where you can start your
programming. Please proceed at chapter 2.8.

If the UBI Shell countdown menus are shown, but are followed by
any other message than “UBI Fingerprint 7.xx”, some other appli-
cation has already been selected in UBI Shell. Refer to the Instal-
lation & Operation manual for information on how to select the UBI
Fingerprint option.

If the printer is not fitted with any startup program at all, the display
window should show the following message directly after power-

up:

UBI Fingerprint
7.XX

This means that the printer has entered the immediate mode of UBI
Fingerprint. Proceed at chapter 2.8.

If any other kind of message is displayed than those illustrated
above, the printer is provided with some kind of custom-made
startup program, which you must break before you can start
programming.

* Go on to chapter 2.7.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 9

Chapter 2 Getting Started

2.7 Breaking a
Startup Program

[J Breaking a Program
Also see:
* Chapter 5.12

Default Method (break from keyboard)
Press the€> key and keep it pressed down while also pressing
the <Pause key.

Other Methods

» The program may be provided with other means for breaking the
program, e.g. by sending a certain character from the host or by
pressing another key or combination of keys. Break from
keyboard may also be disabled completely.

When a break interrupt has been executed and you have entered the
immediate mode, there will be no change inthe printer's display, but

a message should appear on the screen of the host, provided you
have a working two-way communication:

User break in line XXXX
How to go on

» If you have succeeded in breaking the program, proceed at
chapter 2.8.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 10

Chapter 2 Getting Started

2.8
Test

Communications

[0 Version Check
Also see:
+ Chapter 15.11

[J Communication Setup

Also see:

« Chapter 15.6

* Installation & Operation manual

[J Verbosity
Also see:

* Chapter 7.7

* Chapter 15.7

[J UBI Shell
Also see:
* Installation & Operation manual

[J Text Field Printing
Also see:
« Chapter 10.2

[J Character Sets

Also see:

« Chapter 9.1

+ UBI Fingerprint Reference Manual

Check that you have entered the immediate mode and have a
working two-way serial communication by sending a simple
instruction from the host to the printer. On the keyboard of the host,

type:

? VERSION$ [(0= Carriage Return key)
The printer should respond immediately by returning the version of
the installed UBI Fingerprint software to the screen of the host, e.qg.:

UBI Fingerprint 6.11
Ok

This indicates that the communication is working both ways.

If the communication does not work, turn off the printer and check
the connection cable. Also check if the communication setup in the
host corresponds to the printer's setup and if the connection is made
between the correct ports. Check the verbosity level. Then try the
communication test again.

Another possible cause of error may be that another communication
channel than "uartl:" has been selected for UBI Fingerprintin UBI
Shell. Reselect the UBI Fingerprint application for "uartl:" as
described in the Installation & Operation manual.

Once you know that the communication is working, you may go on
and make the printer auto-adjust its paper feed according to the type
of labels loaded. Simultaneously press tB&ig> and Feed>

keys on the printer's built-in keyboard. The printer will feed out at
least two blank labels (or corresponding).

Finally send a line of text to make sure that characters transmitted
from the terminal are interpreted as expected by the printer's
software:

FONT "Swiss 721 BT" g
PRTXT "ABCDEFGHIIJKLM" O
PRINTFEED U

Each line will be acknowledged by an “Ok” on the screen, provided
that it has been entered correctly, that there is a working two-way
serial communication, and that the verbosity is on. When you press
the “Carriage Return” key the third time, the printer will feed out a
label, ticket, tag or piece of strip with the text printed near the lower
left corner of the printable area.

BCDEFGHIJKLM

Try using other characters between the quotation marks in the third
line, especially typical national characters like AAOU ¢¥c etc.
Should any unexpected characters be printed, you may need to
select another character set, N&&Gstatement in chapter 9.1, or
switch from 7-bit to 8-bit communication.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 11

Chapter 3

3. Creating a Simple Label

3.1 Introduction To get a quick impression of how UBI Fingerprint works, start by
creating a simple label following the step-by-step instructions
below. Later in this manual, the various functions will be explained
in greater detail. You can also look up the instructions in the UBI
Fingerprint Reference Manual.

: Use a word processing program, e.g. Windows Notepad, to enter
[J Carriage Return Character . .
Also see: the program lines. Use a space character to separate the line number
« Chapter 4.1 from the instruction that follows. Finish each line with a carriage
return character, indicated by @ below.

When you have entered a batch of program lines, copy the lines and
paste them into a communication program, e.g. Windows Termi-
nal, which is connected to the printer (see chapter 2.11).

The printer will not execute the program until you have enkiid
+ Carriage Return.

3.2 Printing a Box Let us start by printing a box 430 dots high and 340 dots wide with
a line thickness of 15 dots. The box is inserted at position X=10,
Y=10:

NEW

10 PRPOS 10,10 0O

20 PRBOX 430,340,15 O
200 PRINTFEED O

300 END O

RUN O

Note: The printer will not execute the program until you have typed
RUNCL.

[J Box Field Printing Y 4
Also see: :
* Chapter 10.5

<||||| PAPER FEEDIIIIII

Note:
This example is designed to be run on any present UBI Fingerprint 7.xx-
compatible EasyCoder printer connected to a terminal or computer and
loaded with a paper web (preferably labels) according to the following

specifications.

Label size:

Width: =528 mm (2.08")
Length: =70 mm (2.75"

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 12

Chapter 3 Creating a Simple Label

3.3 Printing an
Image

[0 Image Field Printing
Also see:
* Chapter 10.4

3.4 Printing a Bar
Code

[J Bar Code Field Printing
Also see:
* Chapter 10.3

3.5 Printing Human
Readables

Now we add the image "UBI.1" after changing the position
coordinates to X=30,Y=30.

30 PRPOS 30,30 O
40 PRIMAGE "UBIL.1" [
RUN O

Before you print a bar code, you need to choose a bar code type.
Note there is no blank space in the bartype name.

50 PRPOS 75,270 0O
60 BARTYPE "CODE39" [J
70 PRBAR"UBI" [

RUN [

To get human readable text printed under the bar code, add these
lines:

1 BARFONT ONO
2 BARFONT "Swiss 721 BT", 6 g
RUNO

UBI

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 13

Chapter 3 Creating a Simple Label

3.6 Printing Text

L] Text Field Printing
Also see:
« Chapter 10.2

3.7 Listing the
Program

[0 Program Editing and Listing
Also see:
* Chapter 5.4

3.8 Changing a
Program Line

Add a line of text at position X=25,Y=220:
80 PRPOS25220 [

90 FONT "Swiss 721 BT", 6 U
100 PRTXT "My FIRST Label!" 4
RUN O

UBI

i My FIRST label!

To view the whole program, type:

LIST O

The lines will be listed in ascending order on your terminal's screen:

1 BARFONT ON

2 BARFONT "Swiss 721 BT", 6
10 PRPOS 10,10

20 PRBOX 430,340,15

30 PRPOS 30,30

40 PRIMAGE "UBI.1"

50 PRPOS 75,270

60 BARTYPE "CODE39"

70 PRBAR "UBI"

80 PRPOS 25,220

90 FONT "Swiss 721 BT", 6
100 PRTXT "My FIRST label!"
200 PRINTFEED

300 END

ok

If you want to change a program line, simply rewrite the line using
the same line number. For example, move the text to the right by
rewriting line number 80 with new coordinates:

80 PRPOS 75,220 O
RUN O

UBI

My FIRST label!

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 14

Chapter 3 Creating a Simple Label

39 Saving the
Program

[J Saving
Also see:
* Chapter 5.13

3.10 Error Handling

[0 ERRHAND.PRG
Also see:
* Chapter 16.4

3.11 Renumbering
Lines

[0 Renumbering Program Lines
Also see:
* Chapter 5.4

If you want to save your first attempt, issue the following instruc-
tion:

SAVE "LABEL1" 0O

Your program will be saved in the printer's memory under the name:
LABEL1.PRG

The program above is very simple and there is a very small risk of
encountering any errors. When writing more complex programs,
you might find use for an errorhandler. For that purpose we have
included a program called ERRHAND.PRG in the firmware.
Should your printer not contain any errorhandling program, you
will find ERRHAND.PRG listed in chapter 16.4.

ERRHAND.PRG contains subroutines that e.g. displays the type of
error on the printer's LCD display (e.g. "OUT OF PAPER" or
"HEAD LIFTED"), prints the error number on your screen, and
assigns subroutines to some of the keys on the keyboard (if any).
There is also a subroutine that perforrRRANTFEEDwith error-
checking. The ERRHAND.PRG occupieslines 10, 20 and 100000—
1900000.

If ERRHAND.PRG is merged with the program you just wrote,
lines 10 and 20 in your program will be replaced with lines 10 and
20 from ERRHAND.PRG. Therefore you have to renumber your
program, so that your program begins with an unoccupied number,
e.g. 50, before ERRHAND.PRG is merged:

RENUM 50,1,10 [
Ok

LIST O

50 BARFONT ON

60 BARFONT "SWO030RSN"
70 PRPOS 10,10

80 PRBOX 400,300,10

90 PRPOS 25,25

100 PRIMAGE "UBI.1"

110 PRPOS 75,250

120 BARTYPE "CODE39"
130 PRBAR"UBI"

140 PRPOS 25,200

150 FONT "SWO030RSN"

160 PRTXT "My FIRST label!"
170 PRINTFEED

180 END

ok

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 15

Chapter 3 Creating a Simple Label

3.12 Merging
Programs

[J Merging programs
Also see:
« Chapter 6.3

3.13 Using the Print
Key

[J Branching and Loops
Also see:

* Chapter 5.6 (GOTO)

* Chapter 5.7 (GOSUB)

Now your label-printing program LABEL1.PRG will not interfere
with ERRHAND.PRG and you can merge the two programs into
asingle program. Infact, you will create acopy of ERRHAND.PRG
which is merged into LABEL1.PRG. Thus the original
ERRHAND.PRG can be merged into more programs later:

MERGE "rom:ERRHAND.PRG" O

Instead of using@RINTFEEDstatement, we will use a subroutine
in ERRHAND.PRG. Because ERRHAND.PRG assigns functions
to e.g. the Rrint > key, you can create a loop in the program so you
will get a label every time you press tHerit > key.

160 GOSUB 500000 O
170 GOTO 170 O
RUN O

Try pressing different buttons on the printer's keyboard. Only those,
to which functions been assigned in ERRHAND.PRG (i.e. the
<Pauser, <Print>, <Setup> and $¥eed> keys) will work.

You can break the program by simultaneously pressingitié s
and Pause> keys.

Save the program again using the same name as before:

SAVE "LABEL1" 0O

The previously saved program "LABEL1.PRG" will be replaced
by the new version.

With this example, we hope you have got a general impression of
the basic methods for UBI Fingerprint programming and that you
also see the advantages of using ERRHAND.PRG or a similar
program for errorhandling and initiation.

ERRHAND.PRG can easily be modified to fit into more complex
programs and we recommend that you use it when writing your
programs until you feel ready to create errorhandling programs
yourself (see chapter 16 “Error-Handling”).

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 16

Chapter 4 Terminology and Syntax

4. Terminology and Syntax

4.1 Lines

Note:

If you enter a carriage return on your

terminal, the printer will, by defau
echo back a Carriage Return + a Li

he
Feed (ASCII 13 + 10 decimal). Using

the setup option “New Line", you m

restrict the printer only to echo bagk

either a Carriage Return (ASCII 13de
or a Line Feed (ASCII 10 dec.).

ty

ay

[¢)
N

[0 Programming Mode
Also see:
« Chapter 5.4

0 Immediate Mode
Also see:
+ Chapter 5.3

[J UBI Direct Protocol
Also see:
+ UBI Direct Protocol 7.xx,

Programmer's Guide

You will always use one or several lines to give the instructions to
the printer, regardless whether you work in the immediate mode, in
the programming mode, or in the UBI Direct Protocol. The differ-
ence is that in the programming mode, the lines are always
numbered (visibly or invisibly), whereas in the immediate mode
and the UBI Direct Protocol, they must not be numbered.

A line may contain up to 300 characters. A line must always be
terminated by a Carriage Return character (ASCII 13 decimal), see
note. When the line reaches the right edge of the screen of the host,
it will usually wrap to the next screen line.

Theoretically, line numbers up to > 2 billion can be used. If you
choose to enter the line numbers manually, start by numbering the
lines from 10 and upwards with an increment of 10, i.e. 10, 20, 30,
40 etc. That makes it possible to insert additional lines (e.g.
11,12,13...etc.), when the need arises. However, the line numbers
are your own decision, since you must type them yourself.

You can also omit line numbers at edition and let the software
number the lines automatically. Such line numbers will not be
visible before the program is listed.

After having typed the line number, use a blank space to separate
it from the statement or function that follows. That makes it easier
to read the program without having to list it.

Several instruction may be issued on the same line, provided they
are separated by colons (%), e.g.:

100 FONT "Swiss 721 BT":PRTXT "HELLO"

This is especially useful in the immediate mode (see chapter 5.3)
and in the UBI Direct Protocol, where you can send a complete set
of instructions as a single line, e.g.:

PP100,250:FT"Swiss 721 BT":PT"Text 1":PF g

It is not possible to alter a line after it has been transmitted to the
printer. If you want to change such a line, you must send the whole
line again using the same line number, or delete it usdit &TE
statement (see chapter 5.4).

A statement is an instruction, which specifies an operation. It con-
sists of a keyword (e.BRTXT), usually followed by one or several
parameters, flags, or input data, which further define the statement.

The keyword can be entered as uppercase or lowercase letters but
will always appear as uppercase letters, when the programis listed
on the screen of the host. Some keywords can be used in an
abbreviated form, e.RTXTmay also be entered @3.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 17

Chapter 4 Terminology and Syntax

4.2 Statements

[Keywords
Also see:
« Chapter 4.8

4.3 Functions

[] Operators
Also see:
+ Chapter 4.9

[0 Conditional Instructions
Also see:
* Chapter 5.5

4.4 Other Instruc-
tions

45 Expressions

You may use a blank space to separate the keyword from the rest of
the statement, which must be entered exactly according to the
specified syntax. Note that in some cases, a space character is a
compulsory part of the keyword, el4NE_INPUT. When suchis

the case, it is indicated by the syntax description in the UBI
Fingerprint Reference Manual.

Afunctionis aprocedure, which returns avalue. A function consists
of a keyword combined with values, flags, and/or operators. The
keyword can be entered as uppercase or lowercase letters, but it will
always appear as uppercase letters, when the programislisted on the
screen. Values, flags, and operators must be enclosed by parenthe-
ses (). The operators will be explained later on.

Examples:

CHR$(65) Keyword with parameter.
TIMES$("'F") Keyword with flag.

ABS (20*5) Keyword with arithmetic operator

(*) and values.
Keywords, logical operator (AND)
and value.

IF(PRSTAT AND 1)...

A function can be entered inside a statement or on a line containing
other instructions. They are often used in connection with condi-
tional statements, e.g.:

320 IF (PRSTAT AND 1) THEN GOTO 1000

Blank spaces may be inserted to separate the function from other
instructions and also to separate the keyword from the rest of the
statement.

In addition to statements and functions, there are a few other types
of specialized instructions such asi#er EfandT IMES$ variables,
theSYSVARYystem array and tRJN pcx2bmpcommand, which

do not fit into the above-mentioned categories.

In the descriptions of the syntax for the various instructions, the
word “Expression” is used to cover both constants and variables.

Expressions are of two kinds:

» String expressionsare carriers of alphanumeric text, i.e. string
constants and string variables.

* Numeric expressiois contain numeric values, numeric vari-
ables and operators only, i.e. numeric constants and numeric
variables.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 18

Chapter 4 Terminology and Syntax

4.6

4.7

Constants

Variables

Constants are fixed text or values. There are two kinds:

» String constantsare sequences of characters, i.e. text. If digits
or operators are included, they will be considered as text and will
not be processed. String constants must always be started and
terminated by double quotation marks ("..."),' €IgEST.PRG.

* Numeric constantsare fixed numeric values. Only decimal
integers are allowed, i.e. 1, 2, 3, 4, 5 etc. Decimal points (e.g.
1.56890765) are not supported. Values may be positive or
negative. Positive number may optionally be indicated by a
leading plus sign (+), whereas negative numbers always must be
indicated by a leading minus sign (-).

Note that certain characters, e.g. digits, can be either string constants
(text) or numeric constants (numbers). To allow the software to
detect that difference, string constants must always be enclosed by
double quotation marks (""), as opposed to numeric constants.

Variables are value holders. There are two main types:

» String variables are used to store strings entered as string
constants or produced by UBI Fingerprint instructions. Max.
size is 64 kbytes. String variables are indicated by a trailing $
sign.

Examples:

A$ ="UBI PRINTER"
B$ = TIMES$

LET C$ = DATE$

* Numeric variables are used to store numbers, entered as
numeric constants, or produced by UBI Fingerprint instructions
or operations. Numeric variables are indicated by a trailing %
sign.

Examples:

A% = 150

B% = DATEDIFF ("981001","981130")
LET C% = 2”2

The name of a variable may consist of letters, numbers and decimal
points. The first character must always be a letter. No keywords or
keyword abbreviations must be used. However, completely em-

bedded keywords are allowed.

Examples:

LOC is a keyword
CLOCKS$ ="ABC" is OK

LOC$ ="ABC" causes an error
LOCKS$ ="ABC" causes an error

The presently used keywords and keywords reserved for future
program enhancement are listed on next page.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 19

Chapter 4 Terminology and Syntax

48 Keyword List

BT FONTNAME$ LIST PORTOUT SOUND

' BUSY FONTS LOAD PP SPACE$

(CHDIR FOR LOC PRBAR SPC

) CHECKSUM FOR APPEND AS |LOCATE PRBOX SPLIT

* CHR$ FOR INPUT AS LOF PRIMAGE STEP

+ CLEANFEED FOR OUTPUT AS |LSET PRINT STOP

, CLEAR FORMAT LTS& PRINT USING STORE

- CLL FORMFEED MAG PRINTFEED STRS

/ CLOSE FRE MAP PRINTONE STRING$

: COM ERROR FT MERGE PRLINE SWAP

; COMBUF$ FUNCTEST MID$ PRPOS SYSTEM

< COMSET GET MOD PRSTAT SYSVAR
<= COMSTAT GOSuUB NAME PRTXT TAB

<> CONT GOTO NASC PT TESTFEED
= COPY HEAD NASCD PUT THEN

=< COUNT& HEX$ NEW PX TICKS

= CSRLIN HOLIDAY$ NEXT RANDOM TIME$

> CSUM IF NI RANDOMIZE TIMEADD$
>< CuUT I NORIMAGE READ TIMEDIFF
>= DATA IMAGE NOT READY T0

? DATES IMAGENAME$ OFF REBOOT TRANSFER
ABS DATEADD$ IMAGES OFF LINE REDIRECT OUT TRANSFER$
ACTLEN DATEDIFF IMMEDIATE ON REM TRANSFERSET
ALIGN DELETE IMP ON BREAK REMOVE TROFF

AN DEVICES INKEY$ ON COMSET RENUM TRON
AND DIM INPUT ON ERROR GOTO |RESET VAL

AS DIR INPUT$ ON KEY RESTORE VERBOFF
ASC ELSE INSTR ON LINE RESUME VERBON
BARADJUST END INT OPEN RESUME NEXT VERSION$
BARFONT EOF INVIMAGE OPT RETURN WEEKDAY
BARHEIGHT EQV IP OPTIMIZE RIBBON WEEKNUMBER
BARMAG ERL KEY OR RIGHT$ WEND
BARRATIO ERR KEYBMAPS$ PB RND WHILE
BARSET FF KILL PEC2DATA RSET WRITE
BARTYPE FIELD LAYOUT PEC2LAY RUN XOR

BEEP FIELDNO LBLCOND PECTAB SAVE XYZZY

BF FILE& LED PF SET FAULTY DOT |\

BH FILES LEFT$ PL SETSTDIO A

BM FIX LEN PLAY SETUP

BR FONT LET PM SGN

BREAK FONTD LINE INPUT PORTIN SORT

UBI Fingerprint 7.11 — Programmer's Guide Ed. 1

20

Chapter 4 Terminology and Syntax

49 Operators There are three main types of operators — arithmetic, relational, and
logical:

Arithmetic Operators ~ (integers only)

+ Addition (e.g.2+2=4)

- Subtraction (e.g4-1=3)

* Multiplication (e.9.2*3=6)
Integer division (e.p\2=3)

MOD Modulo arithmetic (resultsin an integer value whichis the
remainder of an integer division, esp10D2=)

A Exponent (e.gp"2=25)
Parentheses can be used to specify the order of calculation, e.g.:
7+5"2\8 = 10

(7+5°2)\8 = 4

Relational Operators

< less than

<= less than or equal to

<> not equal to

= equal to (also used as an assignment operator)
> greater than

>= greater than or equal to

Relational operators return:

-1 if relation is TRUE

0 if relation is FALSE

The following rules apply:

» Arithmetic operations are evaluated before relational opera-
tions.

» Letters are greater than digits.

» Lowercase letter are greater than their uppercase counterparts.

» The ASCII code “values” of letters increase alphabetically and
the leading and trailing blanks are significant.

» Strings are compared by their corresponding ASCII code value.

Logical Operators

AND conjunction
OR disjunction
XOR exclusive or
EQV equivalent

Logical operators combine simple logical expressions to form more
complicated logical expressions. The logical operators operate
bitwise on the arguments, e.g.:

1AND2=0
Logical operators can be used to connect relational operators, e.g.:

A%10 AND A%<100
Logical operators can also be used to mask bits, e.g.:

A%=A% AND 128

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 21

Chapter 4 Terminology and Syntax

49 Operators’ cont'd. The principles are illustrated by the following tables, where A and
B are simple logical expressions.

Logical operator: AND

A B A AND B

1 1 1

1 0 0

0 1 0

0 0 0
Logical operator: XOR

A B A XOR B

1 1 0

1 0 1

0 1 1

0 0 0
Logical operator: OR

A B A ORB

1 1 1

1 0 1

0 1 1

0 0 0
Logical operator: EQV

A B A EQVB

1 1 1

1 0 0

0 1 0

0 0 1

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 22

Chapter 4 Terminology and Syntax

“Device” is a generic term for communication channels, various
parts of the printer's memory, and operator interfaces such as the
printer's display and keyboard.

4.10 Devices

[J Files

Also see:

*Chapter6 (File system)

* Chapter 7 (Input, Append, Random)
+ Chapter 8 (Output, Random)

Name No. Canbe OPENed for.. Remarks
Communication:
console: 0 Input/Output Printer's display and/or keyboard
uartl: 1 Input/Output Serial communication port
uart: 2 Input/Output Serial communication port (option)
centronics: 4 Input Parallel communication
Memory:
rom: N/A Input (files only) Printer's firmware (Kernel) plus
read-only memory card
c N/A Input/Output/Random (alternative name "ram:")
temp: N/A Input/Output/Append/ Printer's temporary memory
Random (files only)
cardl: N/A Input/Output/Append/ SRAM memory card
Random (files only)
Special:
lock: N/A Input Electronic keys
storage: N/A Input/Output/Random Electronic keys
wand: N/A Input Data from Code 128 bar code via
printer's bar code wand interface

The devices can be listed by means DE/ICESstatement. All
devices will be listed regardless if they are installed or not.

Devices are referred to by name in connection with instructions
concerning directories (e SAVEKILL ,FORMAJland withOPEN
statements. Note that the names of all devices should end with a
colon (:) and the name should be enclosed by double quotation
marks, e.g. "tmp:". Use lowercase characters only in device names.

Ininstructions used in connection with communicationBREAK
BUSY READYCOMSHETthe keyboard/display unit and the com-
munication channels are specified by numbers instead of names:

0 = "console:"
1 = "uartl:"

2 = "uart2:"

4 = "centronics:"

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 23

Chapter 5 UBI Fingerprint Programming

5. UBI Fingerprint Programming

5.1 Introduction The UBI Fingerprint 7.xx firmware works in two main modes, the
“Immediate Mode” and the “Programming Mode”. A special case
is the UBI Direct Protocol 7.xx, which is described in a separate
Programmer's Guide and will not be explained any further in this
manual.

Immediate Mode implies that the instructions are executed at once
as soon as a carriage return is received. Most instructions can be
used, but the instructions cannot be saved after execution.

Programming Mode is used to enter instructions in the form of
program lines. The lines can be manually provided with visible line
numbers at editing, or be automatically provided with invisible line
numbers by the printer's software. No execution is performed until
a RUNstatement is issued in the Immediate Mode, i.e. on a line
without number. The program can be saved in the printer's memory
and used again.

5.2 Editing Methods To be able to program a printer, you need a terminal or host

computer with a screen and a keyboard and a working two-way
. serial communication between printer and host, preferably RS
Ly~ Computer Connection 232C on communication channel "uart1:". The host must be able to
Also see: transmit and receive ASCII characters, e.g. by means of a commu-

* Chapter 2.1 nication program like Windows Terminal.
There are three main methods of writing and transmitting a program
to the printer:
* Line-by-Line Method
If you have an “non-intelligent” terminal that just can transmit
and receive ASCII characters, you must write and send each line
separately.
[0 Verbosity)) .
AlSO see: Each line will be checked for possible syntax errors as soon as
* Chapter 7.7 the printer receives it and the printer will return either “Ok” or
* Chapter 15.7 an error message to the screen of the host, provided verbosity is
O Error Messages on-
Also see: If you need to correct a mistake, you must rewrite the complete
* Chapter 16.1 line using the same line number. Thus, this method is not suited

for the programming without line numbers.

Note that even if most examples of computer connection in this
manual assumes a PC running under MS Windows (3.11, Win
95 or NT4), UBI Fingerprint is by no means restricted to such
computers. Other personal computers and operating systems,
such as DOS, Apple Macintosh OS, OS-2, Unix etc., as well as
larger computer systems, can be used following the same
principles.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 24

Chapter 5 UBI Fingerprint Programming

5.2 Editing Methods,

cont'd.

[0 Verbosity
Also see:

* Chapter 7.7

« Chapter 15.7

L] Error Messages
Also see:
* Chapter 16.1

53 Immediate Mode

Copy-and-Paste Method

If the host computer is fitted with both a communication
program (e.g. Windows Terminaind a word-processing
program (e.g. Windows Write or Windows Notepad), you can
write the program, partly or completely, in the word processor
and then Copy and Paste it into the communication program.

Each line will be checked for possible syntax errors as soon as
the printer receives itand the printer will return an error message
after each line where an error has been detected, provided
verbosity is on.

If you need to correct a mistake, you can make the correction in
the word processor and then copy and paste the line into the
communication program. If you do not use line numbers, you
must Copy and Paste the complete corrected program back tothe
communication program.

Send Text Method

If the host computer is fitted with both a communication
program (e.g. Windows Terminal) and a word-processing pro-
gram (e.g. Windows Write or Windows Notepad), you can write
the program, partly or completely, in the word processor and
send the whole text file to the printer by means of the commu-
nication program (e.g. “Transfers; Send Text File” in Windows
Terminal).

Each line will be checked for possible syntax errors as soon as
the printer receives it and the printer will return an error message
after each line where an error has been detected, provided
verbosity is on.

If you need to correct a mistake, you can make the correction in
the word processing program and then send the complete
program again via the communication program.

The Immediate Mode can be used for four main purposes:

Printing of labels that you will never need to print again.
Printing of labels, which have been edited and saved in the host
computer and are downloaded as text strings to the printer.
Editing of programs to be executed in the programming mode.
Issuing of instructions outside the execution of programs in the
programming mode, e QELETELOADMERGEEVWREBOOT

or RUN

Rather than creating programs in the Programming Mode, in some
cases you may want to edit the label in your host computer and
transmit the printing instructions and data to the printer in the form
of text strings. This method resembles the so called “Escape
sequences” used in earlier generations of label printers.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 25

Chapter 5 UBI Fingerprint Programming

5.3 Immediate Mode,

cont'd.

[J Standard Error-Handling
Also see:
« Chapter 16.1

[J UBI Direct Protocol

Also see:

+ UBI Direct Protocol 7.xx,
Programmer's Guide

Important:

To make the strings shorter, use the UBI Fingerprint abbreviations.
Several statements can be issued on the same line separated by
colons (:), on separate lines, or using a mix of both methods.

Examples:
All intructions can be issued in a single line....

PP160,250:DIR3:AN4:FT"Swiss 721 BT":PT"Hello":PF 0
or with each instruction as a separate line...

PP160,250 0 (print start position)
DIR3 O (print direction)
AN4 O (alignment)
FT"Swiss 721 BT" O (font select)
PT'Hello® O (text input data)
PF O (print one copy)

As soon as a carriage return is received, the software checks the
instructions for syntax errors. Provided there is a working two-way
communication and the verbosity is on, the printer will either return
an error message or “Ok” to the host.

This type of communication works well and is easy to learn, but it
does not take full advantage of the flexibility and computing
capacity offered by the UBI Fingerprint printers. For example, you
cannot save the labels in the printer but must download each new
label, and all error-handling must be taken care of by the host.

Rather than using the Immediate Mode, the UBI Direct Protocol is
usually to prefer, since it allows variable input data to be combined
with predefined layouts, handles counters and contains a flexible
error-handler.

Beside printing text, bar codes and graphics, you can perform other
tasks in the Immediate Mode as well, e.g. calculation. Try typing
this instruction on the keyboard of the host:

? ((5"2+5)\3)*5 O (O = Carriage Return key)

The calculation will be performed immediately and the result will
be returned to the screen of the host:

To send aninstruction from the terminal 50
to the printer, press the Carriage Return ok
key. In the programming examples later

on in this manual, this character will
omitted, but you must not forget to er
it via the keyboard of the host.

(Fourkeys or key combinations are enabled in the Immediate Mode,

obviously provided that the printer is fitted with the key(s) in
question:

* The <rint> key or button producesFORMFEEDBperation.
* The Feed> key produces BRORMFEEDperation.

* The <Shift> + <Feed> keys produce AESTFEEDperation.
» The Setup> key gives access to the Setup Mode.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 26

Chapter 5 UBI Fingerprint Programming

5.3 Immediate Mode,
cont'd.

5.4 Programming
Mode

[0 Autoexec-files (startup files)
Also see:
« Chapter 5.13

When the printhead is lowered and tRegirnt > or Feed> keys are
pressed, three possible error conditions can cause an error message
in English to be displayed:

* “Error 1005 -Press any key!-” (Out of paper)

e “Error 1031 -Press any key!-” (Next label not found)

* “Error 1027 -Press any key!-” (Out of ribbon)

Afterthe error has been attended to, the error message can be clearec
by pressing any of the above-mentioned keys.

When the printhead is lifted, th@rint > and <eed> keys will run

the printers mechanism in order to facilitate cleaning of the print
roller, i.e. the rubber-coated roller that drives the paper forward
under the printhead. The motor will stop automatically when the
print roller has completed a few rotations.

The Programming Mode is used to execute instructions entered in
the form of program lines. The firmware assumes input to the
Programming Mode in two cases:
* When a line starts with a number.
» After anIMMEDIATE OFFstatement has been executed.
(Se€é'Programming without Line Numberdater in this chap-
ter).

One or several lines make up a program, which can be executed as
many times as you wish. A program can also be saved, closed,
copied, loaded, listed, merged, and killed, see chapter 6.3. All lines
have line numbers, that are either manually entered when the
program is edited, or provided automatically and invisibly by the
firmware when alMMEDIATE ONstatement has been executed.

Eachtime the printer receives a program line followed by a Carriage
Return character, the firmware checks the line for possible syntax
errors. If an error is encountered, an error message will be returned
to the host, provided there is a working two-way communication
and the verbosity is on.

The program is executed in ascending line number order when a
RUNstatement is issued in th@mediate Mode, i.e. on a line
without any line number. However, various types of branching and
loops can be created in the program that makes the execution
deviate from a strict ascending order.

Note that the editing of the program takes place in the Immediate
Mode, while the execution is performed in the Programming Mode.
Often, programs are made as autoexec (startup) files that start up
automatically when the printer is turned on, and keeps on running
infinitely.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 27

Chapter 5 UBI Fingerprint Programming

54 Programming Programming with Line Numbers
Mod , In this case you will start each line by manually entering a line
0de, contd. number. We recommend that you start with line number 10 and use

an increment of 10 between lines to allow additional lines to be
inserted later. To make the program easier to read, you can use a
space character between the line number and the instruction. If not,
the software will insert a space character automatically when the
program is listed. Let us use the calculation example from the
Immediate Mode. Itwould look like thisin the Programming Mode:

Important 10 ? ((5"2+5)\3)"5 O

To send aninstruction from the terminal RUN U

to the printer, press the Carriage Retlirn yields:
key. In the programming examples later 15

onin this manual, this character willbe

omitted, but you must not forget to enter

it via the keyboard of the host.

Let us have a look at the lines:

» The first line consists of a line number (10) followed by an
optional space character and the instru@i¢{®"2+5)\3)*5
(? is a shorthand form for the statemeRINT, which returns
the result of the calculation to the screen of the host). The line is
terminated by a Carriage Return character.

* Next line has no line number, and contains the stateRtét
which orders the printer to execute all preceding numbered lines
in consecutive ascending order according to their line numbers.

* The result (15) will be displayed on the terminal's screen
followed by “Ok” to indicate that execution was successful.

In this manual, the programming examples will generally have line
numbers in order to make them easier to understand. For more
complex programs, programming without line numbers, as ex-
plained on next page, may be both easier and quicker.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 28

Chapter 5 UBI Fingerprint Programming

54 Programming
Mode, contd.

[J Branching the Program Execution
Also see:
* Chapter 5.6 — 5.8

Programming without Line Numbers
You can choose to omit entering line numbers manually when

writing a program. This is a special case of the Programming Mode,
butin order to make the printer understand what you wantto do, you
must turn off the Immediate Mode by means oMANEDIATE
OFFstatement. (Normally, the software interprets the lack of line
numbers as Immediate Mode).

Then you can write the program line by line without having to type
a line number at the start of each line. In other respects, you can
generally work just as in the normal programming mode.

However, a major difference is when you want to make the
execution branch to a certain line, e.g. Iy@T Gtatement. You
cannot use line numbers to specify the line in question. Instead,
there is a feature called “line labels”. The line you want to refer to
must start with a line label, i.e. a number of characters appended by
acolon (:). The line label must not start with a digit or interfere with
any keyword (see chapter 4.8).

When you want to refer to a line marked with a line label, just enter
the line label (without any colon), where you otherwise would have
put the line number.

Finish the program by issuingdtWMEDIATEONstatement before
youRUNt. The lines willautomatically be numbered 10-20-30-40-
50 etc., but the line numbers will not be visible befordy8u the
program. Line labels will not be replaced by line numbers.

Two simple examples show the difference between using line
numbers and line labels:

Line Numbers Line Labels
IMMEDIATE OFF
10 GOSUB 1000 GOSUBQ123

20 END END

1000 SOUND 440,50 Q123.SOUND 440,50

1010 RETURN RETURN
IMMEDIATE ON

RUN RUN

LIST LIST

10 GOSUB 1000 10 GOSUB Q123

20 END 20 END

1000 SOUND 440,50
1010 RETURN

30 Q123 SOUND 440,50
40 RETURN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 29

Chapter 5 UBI Fingerprint Programming

54 Programming
Mode, contd.

Warning! If there already is a progral
in the working memory, it will be delet
and cannot be restored unless it

beenSAVEd.

Programming Instructions _ o -
A number of instructions are used in connection with the editing of
programs in the Programming Mode:

m NEW
ed Before you enter the first program line, always issUsEAV
138Sstatement in the Immediate ModedbEARhe printer's working

memory,CLOSHEall files andCLEARall variables.

IMMEDIATE OFF

To write the program without entering line numbers manually,
issue this statement in the Immediate Mode before the first line is
entered.

REM (

To ﬁl)wake the program easier to understand, enter remarks and
explanations on separate lines or in lines containing other instruc-
tions. Any characters precededrRigMor its shorthand version
(single quotation mark), will not be regarded as part of the program
and will not be executeBREMstatements can also be used at the end
of lines, if they are preceded by a colon (©).

END

Usually, subroutines are entered on lines with higher numbers than
the main program. Itis a good programming habit to finish the main
program with arENDstatement in order to separate it from the
subroutines. When &NDstatement is encountered, the execution
is terminated and abDPENediles and devices aeLOSEd

IMMEDIATE ON

IfanIMMEDIATE OFFstatement has been issued before starting to
write the program, turn on the Immediate Mode again by means of
anIMMEDIATE ONstatement before starting the execution, i.e. a
RUNstatement is issued.

LIST

You canLIST the entire program, i.e. make the printer return the
lines to the screen of the host. You can also choose to list part of the
program or variables only. If you have edited the program without
line numbers, the numbers automatically assigned to the lines at
executionwillnow appedrIST isusually issued inthe Immediate
Mode.

DELETE

Program lines can be removed usingdB& ETEstatement in the
Immediate Mode. Both single lines and ranges of lines in consecu-
tive order can be deleted.

RENUM

The program lines can be renumbered, e.g. to provide space for new
program lines, to change the order of execution, or to make it
possible ttVERGID programs. Line references @OSUBSOTO
andRETURNMtatements will be renumbered accordingly.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 30

Chapter 5 UBI Fingerprint Programming

55 Conditional
Instructions

[0 TRUE and FALSE
Also see:
+ Chapter 4.9 (Relational Operators)

Conditionalinstructions control the execution according to whether
a numeric expression is true or false. UBI Fingerprint has one
conditional instruction, which can be used in two different ways:
¢ I[F..THEN...[ELSE]

* |[F..THEN...[ELSE]...ENDIF

IF...THEN...[ELSE]
If a numeric expression is TRUE, then a certain statement should

be executed, but if the numeric expression is FALSE, optionally
another statement should be executed.

This example allows you to compare two values entered from the
keyboard of the host.

10 INPUT “Enter first value ", A%

20 INPUT "Enter second value ", B%

30 C$="1:st value > 2:nd value"

40 D$="1:st value < 2:nd value"

50 IF A%>B% THEN PRINT C$ ELSE PRINT D$
60 END

RUN

Another way to compare the two values in the example above is to
use threer.. THEN statements:

10 INPUT “Enter first value ", A%

20 INPUT "Enter second value ", B%

30 C$="First value is larger than second value"
40 D$="First value is less than second value"
50 E$="First value and second value are equal’
60 IF A%>B% THEN PRINT C$

70 IF A%<B% THEN PRINT D$

80 IF A%=B% THEN PRINT E$

90 END

RUN

IF...THEN...[ELSE]...ENDIF
If is also possible to execute multiflelENandELSEstatements.
Each statement must be entered on a separate line and end of the
instruction must be indicated WNDIF on a separate line, as
illustrated by the following example:
10 TIMES$ = "121500":FORMAT TIME$ "HH:MM"
20 A%=VAL(TIMES)
30 IF A%>120000 THEN
40 PRINT "TIME IS ";TIMES$('F"); ". ",
50 PRINT "GO TO LUNCH!"
60 ELSE
70 PRINT "CARRY ON -,
80 PRINT "THERE'S MORE WORK TO DO!"
90 ENDIF
RUN
yields e.g.:
TIME IS 12:15. GO TO LUNCH!

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 31

Chapter 5 UBI Fingerprint Programming

5.6 Unconditional
Branching

[J Keyboard Control
Also see:
« Chapter 15.1

GOTO

The most simple type of unconditional branching is the “waiting
loop”. This means that a program line branches the execution to
itself, waiting for something to happen, for example a key being
pressed or a communication buffer becoming full.

This example shows how the program waits for the key F1 to be
pressed (line 30). Then a signal is emitted by the printer's buzzer:
10 ON KEY (10) GOSUB 1000

20 KEY (10) ON

30 GOTO 30

40 END

1000 SOUND 880,100

1010 END

RUN

It is also possible to branch to a different line. This is useful when
you want create a waiting loop containing a number of lines.

Example:

10 INPUT "Enter a number:", A%

20 IF A%<0 THEN GOTO 100 ELSE GOTO 200
30GOTO 10

40 END

100 PRINT "NEGATIVE VALUE"

110 GOTO 40

200 PRINT "POSITIVE VALUE"

210 GOTO 40

RUN

TheGOTG@tatementin line 30 diverts the execution back to line 10
over and over again until you type avalue on the host (waiting loop).
Depending on whether the value is less than 0 or not, the execution
branches to one of two alternative lines (100 or 200), which print
different messages to the screen. In both cases, the execution
branches to line 40, where the program ends.

There are more elegant ways to create such a program, but this
example illustrates ho@OT@lways branches to a specific line.
Line 20 is an example of conditional branching, which is explained
in chapter 5.8.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 32

Chapter 5 UBI Fingerprint Programming

5.7

Branching to
Subroutines

GOSUB and RETURN

A subroutine is a number of program lines intended to perform a

specific task, separately from the main program execution. Branch-

ing to subroutine can e.g. take place when:

* An error condition occurs.

» Aconditionis fulfilled, such as a certain key being pressed or a
variable obtaining a certain value.

* A break instruction is received.

» Background communication is interrupted.

Another application of subroutines is branching to one and the same
routine from different places in the same program. Thereby, you do
not need to write the routine more than once and can make the
program more compact.

The main instruction for branching to subroutines iISGR¥SUB
statement. There are also a number of instructions for conditional
branching to subroutines, which will be explained later in this
chapter.

After branching, the subroutine will be executed line by line until
aRETURNMtatement is encountered.

The same subroutine can be branched to as many times as you neec
fromdifferent lines in the main progra@GOSUB:members where

the last branching took place, which makes it possible to return to
the correct line in the main program after the subroutine has been
executed. Subroutines may be nested, i.e. a subroutine may contain
aGOSUBtatement for branching to a secondary subroutine etc.

Subroutines should be placed on lines with higher numbers than the
main program. The main program should be appendedbBian
statement to avoid unintentional execution of subroutines.

Example illustrating nested subroutines:
10 PRINT "This is the main program"

20 GOSUB 1000

30 PRINT "You're back in the main program"
40 END

1000 PRINT "This is subroutine 1"

1010 GOSUB 2000

1020 PRINT "You're back from subroutine 2 to 1"
1030 RETURN

2000 PRINT "This is subroutine 2"

2010 GOSUB 3000

2020 PRINT "You're back from subroutine 3 to 2"
2030 RETURN

3000 PRINT "This is subroutine 3"

3010 PRINT "You're leaving subroutine 3"

3020 RETURN

RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 33

Chapter 5 UBI Fingerprint Programming

58 Conditional As the name implies, conditional branching means that the program
B hi execution branches to a certain line or subroutine when a specified
rancning condition is fulfilled. The following instructions are used for
conditional branching:
[0 Relational Operators IF..THEN GOTO...ELSE
Also see: If a specified condition is TRUE, the program branches to a certain
* Chapter 4.9 line, but if the condition is FALSE, something else will be done.
Example:

10 INPUT "Enter a value: ",A%
20 INPUT "Enter another value: ",B%
30 IF A%=B% THEN GOTO 100 ELSE PRINT "NOT EQUAL"

40 END

100 PRINT "EQUAL"
110 GOTO 40

RUN

ON...GOSUB

Depending on the value of a numeric expression, the execution will
branch to one of several subroutines. If the value is 1, the program
will branch to the first subroutine in the instruction, if the value is

2 it will branch to the second subroutine and so on.

Example:

10 INPUT "Press key 1, 2, or 3 on host: ", A%
20 ON A% GOSUB 1000, 2000, 3000

30 END

1000 PRINT "You have pressed key 1": RETURN
2000 PRINT "You have pressed key 2": RETURN
3000 PRINT "You have pressed key 3": RETURN
RUN

ON...GOTO
This instruction is similar t®&N...GOSUB but the program will

branch to specified lines instead of subroutines. This implies that
you cannot usRETURINtatements to go back to the main program.

Example:

10 INPUT "Press key 1, 2, or 3 on host: ", A%
20 ON A% GOTO 1000, 2000, 3000

30 END

1000 PRINT "You have pressed key 1": GOTO 30
2000 PRINT "You have pressed key 2": GOTO 30
3000 PRINT "You have pressed key 3": GOTO 30
RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 34

Chapter 5 UBI Fingerprint Programming

5.8 Conditional
Branching, contd.

[J Breaking the Execution
Also see:
« Chapter 5.12

[0 Background Communication
Also see:
« Chapter 7.8

ON BREAK...GOSUB
When eBREAKcondition occurs on a specified device, the execu-

tion will be interrupted and branched to a specified subroutine.
There, you can e.g. let the printer emit a sound signal or display a
message before the program is terminated. You can also let the
program execution continue along a different path.

In this example the program is interrupted when the <Shift> and
<Pause> keys on the printer's keyboard are pressed (default). The
execution branches to a subroutine, which emits a siren-sounding
signal three times. Then the execution returns to the main program,
whichisindicated by along shrill signal. You can also issue a break
interrupt by transmitting the character “#" (ASCII 35 dec.) fromthe
host on the communication channel "uartl:".

10 BREAK 1,35

20 BREAK1ON

30 ON BREAK 0 GOSUB 1000:REM Break from keyboard

40 ONBREAK 1 GOSUB 1000:REM Break from host (#)

50 GOTO40

60 SOUND 800,100

70 BREAK 1 OFF:END

1000 FORA%=1TO3

1010 SOUND 440,50

1020 SOUND 349,50

1030 NEXT A%

1040 GOTO 60

RUN

ON COMSET...GOSUB
When one of several specified conditions interrupts the background

communication on a certain communication channel, the program
branches to a subroutine, e.g. for reading the buffer. The interrupt
conditions (end character, attention string and/or max. number of
characters) are specified bC®@MSE$tatement.

Example:

1 REM Exit program with #STOP&
10 COMSETL,"#""&","ZYX","=",50
20 ON COMSET 1 GOSUB 2000
30 COMSET 1 ON

40 IF A$ <>"STOP" THEN GOTO 40
50 COMSET 1 OFF

60 END

1000 END

2000 A$=COMBUF$(1)

2010 PRINT A$

2020 COMSET 1 ON

2030 RETURN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 35

Chapter 5 UBI Fingerprint Programming

5.8 Conditional
Branching, contd.

[J Branching at Errors
Also see:
« Chapter 16.3

Two instructions are used to branch to and from an error-handling
subroutine when an error occurs:

ON ERROR GOTO

This statement branches the execution to a specified line when any
kind of error occurs, ignoring the standard error-trapping routine. If
line number is specified as 0, the standard error-trapping routine
will be used.

RESUME
TheRESUMEtatement is used to resume the program execution

after an error-handling subroutine has been exedRESUMIS
only used in connection WibNERRORGOT$€latements and can
be used in five different ways:

RESUME Execution is resumed at the state-
ment where the error occurred.

RESUME 0 Same aRESUME

RESUME NEXT Execution is resumed at the state-

ment immediately following the
one that caused the error.

RESUME <ncon> Execution is resumed at the speci-
fied line.

RESUME <line label> Execution is resumed at the speci-
fied line label.

This example shows branching to a subroutine when an error has
occurred. The subroutine determines the type of error and takes the
appropriate action. In this example only one error; “1019 Invalid
font” is checked. After the error is cleared by substituting the
missing font, the execution will be resumed.

10 ONERROR GOTO 1000

20 PRTXT"HELLO"

30 PRINTFEED

40 END

1000 IF ERR=1019 THENFONT"Swiss 721 BT" ELSE GOTCQ2000

1010 PRINT "Substitutes missing font"

1020 FORA%=1TO3

1030 SOUND 440,50

1040 SOUND 359,50

1050 NEXT A%

1060 RESUME

2000 PRINT "Undefined error, execution terminated"

2010 END

RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 36

Chapter 5 UBI Fingerprint Programming

5.8 Conditional
Branching, contd.

[0 Keyboard Control and Key Id. No:s
Also see:
« Chapter 15.1

ON KEY...GOSUB

All present UBI Fingerprint 7.xx-compatible printers are provided
with a built-in keyboard. However, unless there is a program
running in the printer, e.g. UBI Shell, the keys have no purpose
(with the exception of Rrint>, <Feed>, <Shift>, and Setup>

keys, which work in the Immediate Mode). To make use of the
keyboard, each key mustbe enabled individually by meaidof a
ONstatement and then be assigned to a subroutine usSing&aY
GOSUBtatement. The subroutine should contain the instructions
you want to be performed when the key is pressed.

Inthe statemenisEY (<id.>) ON ,KEY (<id.>)OFF ,andON
KEY (<id.>) GOSUB... ,the keys are specified by id. numbers
enclosed by parentheses, see chapter 15.1.

Note thatON KEY...GOSUBexcludes input from the printer's
keyboard (see chapter 7.6) and vice versa.

This example shows how the two unshifted kE§s €id. No. 10)
and <F2> (id. No. 11) are used to change the printer's setup in
regard of printout contrast.

10 PRPOS 100,500

20 PRLINE 100,100

30 FONT "Swiss 721 BT"

40 PRPOS 100,300

50 MAG44

60 PRTXT"SAMPLE"

70 KEY (10) ON:KEY (11) ON

80 ONKEY (10) GOSUB 1000

90 ONKEY (11) GOSUB 2000

100 GOTO70
110 PRINTFEED
120 END

1000 SETUP "MEDIA,CONTRAST ,-10%"
1010 PRPOS 100,100 : PRTXT "Weak Print"
1020 RETURN 110

2000 SETUP "MEDIA,CONTRAST,10%"
2010 PRPOS 100,100 : PRTXT "Dark Print"
2030 RETURN 110

RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 37

Chapter 5 UBI Fingerprint Programming

5.9

Loops

GOTO

One type of loop has already been described in connection with the
GOTG@tatementin chapter 5.6, wh@®T@vas used to refer to the
same line or a previous line. There are also two more advanced type
of loops:

FOR..NEXT

These statements are to used create loops, where a counter is
incremented or decremented until a specified value is reached. The
counter is defined byBORstatement with the following syntax:

FOR<numeric variable>=<start value>TO<final value>[STEP< tinterval>]

All program lines following thé&ORstatement will be executed
until aNEXTstatement is encountered. Then the counter will be
updated according to the optiol&IEPvalue, or by the default
value +1, and the loop will be executed again. This will be repeated
until the final value, as specified BhO <finalvalue> | is
reached. Then the loop is terminated and the execution proceeds
from the statement following ti¢EXTstatement.

FOR...NEXT loops can be nested, i.e. a loop can contain another
loop etc. Each loop must have a unique counter designation in the
form of a numeric variable. THeEXTstatement will make the
execution loop back to the most rede@Rstatement. If you want

to loop back to a differeRORstatement, the correspondMEXT
statement must include the same counter designation B®ke
statement.

This example shows how five lines of text entered from the keyboard
of the host can be printed with an even spacing:

10 FONT "Swiss 721 BT"

20 FOR Y%=220 TO 100 STEP -30

30 LINEINPUT "Type text: ";TEXT$

40 PRPOS 100, Y%

50 PRTXT TEXT$

60 NEXT

70 PRINTFEED
80 END

RUN

Here is an example of two nested FOR...NEXT loops:

10 FOR A%=20TO 40 STEP 20
20 FOR B%=1TO 2

30 PRINT A%,B%
40 NEXT : NEXT A%
RUN

Yields:
20
20
40
40

NFE DN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 38

Chapter 5 UBI Fingerprint Programming

59 Loops, contd.

[J Relational Operators
Also see:
« Chapter 4.9

FOR...NEXT, cont'd.
This example shows how an incremental counter can be made:

10 INPUT "Start Value: ", A%

20 INPUT "Number of labels: ", B%
30 INPUT "Increment: ", C%

40 X%=B%*C%

50 FOR D%=1 TO X% STEP C%
60 FONT "Swiss 721 BT",24

70 PRPOS 100,200

80 PRTXT "TEST LABEL"

90 PRPOS 100,100

100 PRTXT "COUNTER: "; A%
110 PRINTFEED

120 A%=A%+C%

130 NEXT D%

RUN

WHILE...WEND
These statements are used to create loops where series of statement

are executed provided a given condition is TRUE.

WHILEis supplemented by a numeric expression, that can be either
TRUE (-1) or FALSE (0). If the condition is TRUE, all subsequent
program lines will be executed untV#ENBtatement is encoun-
tered. The execution then loops back toAldiLEstatement and

the process is repeated, provided WEILE condition still is
TRUE. If theWHILEcondition is FALSE, the execution bypasses
the loop and resumes at the statement followin§y\t&&Btate-
ment.

WHILE...WEND statements can be nested. BAEFNBtatement
matches the most recaHILEstatement.

This example shows a program that keeps running in a loop (line
20-50) until you press the Y key on the host (ASCII 89 dec.), i.e. the
WHIL Econdition becomes true.

10 B%=0

20 WHILE B%<>89

30 INPUT "Want to exit? Press Y=Yes or N=No"A$

40 B%=ASC(A$)

50 WEND

60 PRINT "The answer is Yes"

70 PRINT "You will exit the program"

80 END

RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 39

Chapter 5 UBI Fingerprint Programming

5.10 Program Although UBI Fingerprint gives the programmer a lot of freedom
S in how to compose his programs, based on experience we recom-
tructure mend that the structure below is more or less implemented, with the

obvious exception of such facilities that are not needed.

0 Program Information
» Program information, e.g. program type, version, release date
and byline RENL

O Initiation

Decides how printer will work and branch to subroutines.

» References to subroutines using €N BREAK GOSUB
ON COMSET GOSUOB! ERROR GOSUB! KEY GOSUB

* Printer setup using e §ETUROPTIMIZE ON/OFF, LTS&
ON/OFFCUT ON/OFFFORMAT DATEBEORMAT TIMES
NAME DATE®NAME WEEKDAYSY SVAR

» Character set and map tablISAGCNASCDMAR.

* Enabling keyboardKEY ONKEYBEEPKEYBMAPS$

* Initial LED setting LED ON/OFF.

* Open "console:" for outpuOPEN

* Assign string variables for each line in the dispRRINT#).

* Select current directonlCHDIR.

* Select standard /O chann8KTSTDIQ.

» Open communication channeBREN

* Open files OPEN

* Define arraysIM).

(0 Main Loop
Executes the program and keeps it running in a loop.
 Reception of input datdNPUT, INPUT#, INPUTS, LINE
INPUTH).
* Printing routine FORMFEEPRINTFEED CUT).
* Looping instructionsGOTQ

[0 Subroutines
* Break subroutineBREAK ON/OFBREAK
» Background communication subroutin€OM ERROR ON/
OFF, COMSETCOMSET ON/OFEOMBUER£OMSTAT
* Subroutines for key-initiated actions.
 Subroutines for display messages.
* Error handling subroutineERR ERL PRSTA).
* Label layouts subroutines.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 40

Chapter 5 UBI Fingerprint Programming

511 Execution

[J Standard Error-Handling
Also see:

* Chapter 16.1

Note:

For program instructions you cg
usually use upper- or lowerca
charactersatwill,i.e. NEWand* new’

5e

will work the same way.

To start the execution of the program currently residing in the
printer's working memory, issué&&JNstatement in the Immediate
Mode, i.e. without a preceding line number. By default, the program
will be executed in ascending line number order — with the
exception of possible loops and branches — starting from the line
with the lowest number, but you can optionally start the execution
at a specified line.

You can also execute a program that idx@ADed

If a program has been written without line numbers, the lines will
be numbered 10-20-30-40-50.... etc.

The first program or hardware error that stops the execution will
cause an error message to be returned to the screen of the host,
provided there is a working two-way communicatidon case of
program errors, the number of the line where the error occurred will
also be reported by default, €'gield out of label in line 110”

After the error has been corrected, the execution must be restarted
by means of a neRUNstatement, unless a routine for dealing with

the error in question is included in the program.

For demonstration purposes, we will now:

» write a short program without line numbers,
e execute it,

» and finally list it.

NEW
Ok
IMMEDIATE OFF
Ok
REM This is a demonstration program
PRINT "This is the main program"
GOSUB subl
END
subl: PRINT "This is a subroutine™:' Line label
RETURN
IMMEDIATE ON
Ok
RUN
yields:
This is the main program
This is a subroutine
Ok
LIST
yields:
10 REM This is a demonstration program

!/. For a working two-way communi- 20 PRINT "This is the main program"
cation, three conditions must be fulfilled: 30 cosuB SUB1

 Serial communication
 Std IN channel = Std OUT channel
* Verbosity on

40 END
50 SUB1: PRINT "Thisis asubroutine" ;' Line label
60 RETURN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 41

Chapter 5 UBI Fingerprint Programming

512 Breaking the
Execution

In chapter 2 “Getting Started” at the beginning of this manual, the
methods of breaking a startup program was briefly explained.
Startup programs (autoexec files) start up automatically when the
printer is turned on and continues to run infinitely by means of some
kind of loop.

You can—by default— break a program by pressing3hitx key

and keep it pressed while you also press downRaeise key.
There is — by default — no break facilities from the host via any
communication channel. Therefore, it is strongly recommended
always to include break facilities in startup programs.

If the startup program resides in a memory card, you can of course
turn off the printer, remove the card and start up again.

Four instructions can be used for providing a program with a break
interrupt facility:

BREAK Specifies an interrupt character.

BREAK...ON Enables break interrupt.

BREAK...OFF Disables break interrupt.

ON BREAK...GOSUB... Branches the execution to a sub-
routine when a break interrupt is
executed.

In all break-related instructions, the serial communication chan-
nels and the keyboard are referred to by numbers:
0 ="console:" (i.e. the printer's keyboard)

1="uartl:"
2 ="uart2:"
BREAK

TheBREAkKtatement specifies an interrupt character by its decimal
ASCII value.BREAKcan be separately specified for eaehal
communication channel and for the printer's built-in keyboard.

The interrupt character for all serial channels is by default ASCII 03
dec. (ETX). Also seBREAK...ON.

The interrupt character from the printer's keyboard is by default
ASCII158 dec. ($hift>+<Pauser keys). Also SeBREAK...ON.

BREAK...ON
Break interrupt for all serial communication channetssabled

by default, but can be enabled by means &REAK...ON
statement for the channel in question.

Break interrupt from the keyboardesabledby default.

BREAK... OFF
TheBREAK...OFF statement revok&REAK...ON for the speci-

Y/, BREAKdoes not work on the parallel fied device and deletes the specified break character from the

Centronics channel.

printer's memory.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 42

Chapter 5 UBI Fingerprint Programming

5.12 Breaking
Execution, contd.

Note:

Abreak interrupt characteris savedin the,
printer's temporary memory, and will not

ON BREAK ...GOSUB...

This instruction is not necessary for issuing a break interrupt, but is
useful for making the printer perform a certain task when a break
occurs, e.g. branch the execution to another part of the program,
show a message in the display, emit a warning signal, ask for a
password etcON BREAK... GOSUB... can be specified
separately for each serial communication channel and for the
keyboard.

This example shows how a break interrupt will occur when you

be removed before the printeris restartedPress the X-key (ASCII 88 dec.) on the host connected to "uartl:".

unless you specifically delete it by aA signal is emitted and a message appears in the printer's display.
BREAK...OFF statement for the device 1 BREAK 1,88

in question.

513 Saving the
Program

20 BREAK 1 ON

30 OPEN "console:" FOR OUTPUT AS 1
40 PRINT #1 : PRINT #1

50 PRINT #1, "Press X"

60 PRINT #1, "to break program";

70 ON BREAK 1 GOSUB 1000

80 GOTO 80
90 BREAK 1 OFF
100 END

1000 SOUND 880,50

1010 PRINT #1: PRINT #1

1020 PRINT #1, "PROGRAM"
1030 PRINT #1, "INTERRUPTED",
1040 RETURN 90

RUN

Saving in Printer

When you are satisfied with the program, you S8AVEit in the
printer's permanent memory ("c:"), in the printer's temporary
memory (“tmp:") or in a DOS-formatted memory card ("cardl1:"),
see chapter 6.1. Obviously, if you save it in "tmp:", it will be lost at
power off or at a power failure.

It is also recommended kST the program back to the host and
make backup copy, e.g. on a floppy disk.

Naming the Program

When you save a program for the first time, you must give ita name
consisting of up to 30 uppercase characters including possible
extension. If you omit the extension, the firmware will add the
extension “.PRG” automatically. When naming the program, con-
sider conventions and restrictions imposed by the operating system
of the host, e.g. MS-DOS, Windows 3.11, Windows 95 etc.

If the program or file name starts with a period character, it will be
regarded a system file, ek ES andFORMA§tatements in the
UBI Fingerprint 7.xx Reference Manual.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 43

Chapter 5 UBI Fingerprint Programming

513 Saving the

Program, contd.

[J Current Directory

Also see:

* Chapter 6.1

The following names are used for standad8l Fingerprint
programs and should not be used:

» .setup.saved Current setup values

» .theDefaultSetup Default setup values

* .ubipfrl.bin Standard fonts

* APPLICATION UBI Shell auxiliary file
 DIRECT UBI Shell auxiliary file

« ERRHAND.PRG Error Handler

e FILELIST.DAT UBI Shell auxiliary file

e FILELIST.PRG List the lines of a file

e LBLSHTXT.PRG UBI Shell auxiliary file

* LINE_AXP.PRG UBI Shell Line Analyzer
 LSHOPXP1.SUB UBI Shell auxiliary file

« MKAUTO.PRG Create a startup (autoexec) file
 PUP.BAT UBI Shell Startup file

* SHELLXP.PRG UBI Shell startup program
 STDIO UBI Shell auxiliary file

* WINXP.PRG UBI Shell auxiliary file
Examples:

SAVE "PROGRAM1"
saves the program as PROGRAM1.PRG in the current directory
(by default "c:").

SAVE "card1:PROGRAM1.TXT"

saves the program as PROGRAML.TXT in a DOS-formatted
memory card inserted in the printer's optional memory card
adapter.

Protecting the Program

When a program iISAVE(it can optionally be protected, i.e. it
cannot be listed after being loaded and program lines cannot be
changed, added or deleted. Once a program has been protected, it
cannot be deprotected. Thus, make an unprotected backup copy as
a safety measure, should you need to make any changes later.

Example (saves and protects the program as PROGRAM1.PRG in
the current directory (by default "c:"):
SAVE "PROGRAML1.PRG" P

Saving Without Line Numbers
A program can also AVEdwithout line numbers to make it

easier tdVIERGH with another program without risking that the
line numbers interfere. Both programs should make use of line
labels for referring to other lines, e.g. in connection with loops and
branching instructions.

Example (saves the program as PROGRAML1.PRG without line
numbers in the current directory (by default "c:"):
SAVE "PROGRAM1.PRG"L

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 44

Chapter 5 UBI Fingerprint Programming

513 Saving the
Program, contd.

Making Changes

If you LOADa program, possibly make some changes and then
SAVEthe program under the original name and in the original
directory, the original program will be replaced.

Example (changes the value of a variable in line 50 of a program
and replaces the original version with the changed version):
LOAD "PROGRAM1.PRG"

50 A%-=300

SAVE "PROGRAM1.PRG"

Making a Copy
The easiest way to copy a program is to @R Ystatement. You

can optionally include directory references in the statement.

Example (copies a program from the permanent memory to a DOS-
formatted memory card and gives the copy a new name):
COPY "C:FILELIST.PRG","card1:COPYTEST.PRG"

If you LOADa program and the3AVEt under a new name and/or
in another directory, you will create a copy of the original program.

Example (creates a copy of the program LABEL1.PRG and gives
the copy the name LABEL2.PRG):

LOAD "LABEL1.PRG"

SAVE "LABEL2.PRG"

Renaming a Program
To rename a prograrbQADIt, SAVEIt under a new name, and

finally KILL the original program.

Example (renames LABEL1.PRG with the name LABEL2.PRG):
LOAD "LABEL1.PRG"

SAVE "LABEL2.PRG"

KILL "LABEL1.PRG"

Note: The same general principles also apply to files!

Saving in Non DOS-formatted Memory Cards

Saving a program or file in non DOS-formatted memory cards
requires special equipment such as a PROM programmer and the
aid of the UBI Configuration program, which is included in UBI
Toolbox. You can edit and test the program in the printer's working
memory as described earlier in this chapter. When it works prop-
erly, LIST it back to the host computer @OPYit to a serial
communication channel. Save the file in the host and use UBI
Configuration to convert it to a format suitable for the memory card
programming device. Refer to the UBI Toolbox Programmer's
Manual for further information.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 45

Chapter 5 UBI Fingerprint Programming

513 Saving the
Program, contd.

[Current Directory
Also see:
« Chapter 6.1

Creating a Startup Program
The MKAUTO.PRG program is used to create so called startup

programs or autoexec-files, i.e. programs that will®ADedand
RUNautomatically as soon as the power to the printer is turned on.
Usually, a startup program contains some kind of loop which makes
it run infinitely, awaiting some input or action from the operator.

There must not be more than one startup program in each part of the
memory, i.e.:
» DOS-formatted memory cards ("cardl1:"):
Max. one startup program per card.
* Non DOS-formatted memory cards ("rom:"):
Max. one startup program per card.
» Printer's permanent memory ("'c:"):
Max. one startup program.

If there are more than one startup file in the printer's memory, they

will be used with the following priority:

1. An autoexec.bat file in any type of memory card ("rom:" or
"cardl:") that was inserted at start-up.

2. An autoexec.bat file in printer's permanent memory (“'c:")

3. The pup.bat file (UBI Shell) in the systems part of the printer's
permanent memory (“rom:")

The MKAUTO.PRG program s included in the systems part of the
printer's memory ("rom:") and consists of the following lines:

10 OPEN"AUTOEXEC.BAT'FOR OUTPUT AS 1

20 INPUT "Startup file name:",S$

30 PRINT#1,"RUN";,CHR$(34);S$;CHR$(34)

40 CLOSE1l

A startup program can easily be created from an ordinary program

using the following method:

 After having written and tested the progré&@AVEit.

» Enter the following statement:
RUN "rom:MKAUTO"

» The following prompt will be displayed on the screen:
STARTUP FILE NAME?

» Type the name of the program you B8 Ed (with or without
the extension .PRG) and press the Carriage Return key.

» Okon the screen indicates that the operation is ready.

* The startup program will be stored in the printer's current
directory (by default "c:", i.e. the printer's permanent memory).

* When you restart the printer, the new startup program will start
running, provided there is no other startup program with higher
priority (see previous page).

To undo the operation, use the statement:

KILL "AUTOEXEC.BAT"

This will not erase the original program, but it will no longer be used
as a startup program. Note that you caitiot. startup programs
stored in "rom:".

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 46

Chapter 5 UBI Fingerprint Programming

5.14 Rebooting the Rebooting the printer has the same consequences as turning off and
Printer then on the power.

REBOOT
This statement allows you to reboot the printer from the host or as
a part of the program execution.

When the printer is rebooted, or the power to the printer is turned

on, a number of things happens:

* The printer's temporary memory ("tmp:") is erased, i.e. any
program not alreadyAVEdo “c:" or "cardl:" will be irrevoca-
bly lost, all buffers will be emptied, all files will be closed, all
date- and time-related formats will be lost, all arrays will be lost
and all variables will be set to zero. Fonts and images stored in
the temporary memory will be erased.

* All parameters in UBI Fingerprint instructions will be reset to
default.

» The printer performs a number of self-diagnostic tests, e.g.
printhead resistance check (certain models only) and memory
checksum calculations.

» The printer checks for possible optional devices like interface
boards or cutter.

» The various parts of the printer's memory are searched for
possible startup programs as described in chapter 5.13. The first
startup program encountered will be executed.

Note that rebooting does not change the printer's setup, unless any
physical changes has been done to the printer during the power-off
period, such as a change of printhead or installation or removal of
an interface board.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 47

Chapter 6

6. File System

6.1 Printer's Memory The printer's memory consists of a number of parts, or directories:

+ Permanent Memory ("rom:" and "c:")
The permanent memory resides in one or several flash memory
SIMMs. A flash SIMM will keep it contents when the power to

glbl\sl’r,\‘jv'gt'ogntsa' rdardn-line Memory the printer is off without the aid of a battery backup system.
DRAM = %Or?;‘r'ﬁicRandomccess Each SIMM contains a number of sectors. Some sectors that are
|\7|¥a mory = bothread and write capable, whereas other are read-only. Aread/
VFM = Virtual Small BlockEile write sector is typically 256 kbytes and consists a number of
Manager B pointers and blocks, each with a size of 1 kbyte. A pointer can
FOS = File OperatingSystem refer to several blocks and also to another pointer. Ifjustasingle
ROM = ReadOnly Memory character (one byte) is enteraalwhole 1 kbyte block and one

1 kbyte pointer will be occupied. On the other hand, e.g. 4.5
kbytes of data requires one 1 kbyte pointer and five 1 kbyte

blocks.
/. This applies to the following instruc- When there are no free blocks left in any sector and at power up,
tions: the memory will automatically be reorganized to save space.
272772777 Before reorganization, the sector is copied to a temporary sector
777777 for safety reason if something should go wrong. Files are

rewritten into as few blocks as possible and the number of
pointersisthusreduced. Thenthe sector is erased and the content
is copied back from the temporary sector. This takes some time
and makes the flash memory comparatively slow.

One SIMM must always be present and contains a boot sector
and a number of sectors containing the so called “kernel”.

There is also atemporary area for paper feed info and odometer
values. All these sectors are read-only and are included in the
device'rom:" .

Note:
To provide compatibility with earlig The remaining part of the same flash memory SIMM contains

versions of UBI Fingerprint, the device a number of read/write sectors and is designated as tievice
‘ram:" is equal to "c:". If there are additional flash SIMMs for the permanent memory,
they are also included in the device' .

=

The following table illustrates the boot flash SIMM for an
EasyCoder 501XP/601 XP printer:

Device |Size Sector Used for

c: 256 kbyte |Intel VFM FOS | Customer's programs, files, images etc.
256 kbyte |Intel VFM FOS
256 kbyte |TMP area (FOS)

rom: | 256 kbyte |Kernel UBI Fingerprint firmware, bar codes, standard
256 kbyte |Kernel fonts, standard images, UBI Shell, auxiliary
256 kbyte |Kernel programs?, setup values

256 kbyte |Kernel
192 kbyte |Kernel

rom: |16 kbyte |TMP area Paper feed info, odometer value
16 kbyte | Parameters
rom: 32 kbyte |Boot Startup

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 48

Chapter 6 File System

6.1 Printer's * Temporary Memory (‘temp:’) _ _
, The temporary memory (device "tmp:") is a read/write DRAM
Memory, contd. (Dynamic Random Access Memory) and residies in one or

several SIMM packages. It has no backup and will be com-
pletely erased at power-off.

The temporary memory is used for the following purposes:

- To execute UBI Fingerprintinstructions. At startup the kernel
in the permanent memory is copied to the temporary memory,
where all UBI Fingerprint instructions are executed and the
print image bitmaps are created.

- To be used for the print image buffers.

- To be used for the font cache.

- To be used for the Receive/Transmit buffers. Each serial
communication channel must have one buffer of each kind.
The size of each buffer is decided separately by the setup.

— To be used for communication buffers. In a program, you may
set up one communication buffer for each communication
channel. This makes it possible to receive data simultaneously
from several sources to be fetched at the appropriate moment
during the execution of the program.

- To store data that do not need to be saved after power-off.

- To temporarily store data before they are copied to the
permanent memory or to a memory card.

The latter purpose is important considering how the permanent
memory works. Since the permanent flash memory is compara-
tively slow, in connection with certain instructions (see previous
page) itis more efficient to create files in the temporary memory
and then save them to the permanent memory. When speed is
important, also avoid saving data that nevertheless will be of no
use after power off in the temporary memory.

Note that there is no fixed division of the temporary memory.
After the firmware has been copied to it and the Receive/
Transmit buffers have been set according to the setup, the
remaining memory will be shared between the various tasks.

+ DOS-Formatted Memory Cards: (“cardl:")
The built-in memory can be supplemented with a DOS-format-
ted memory card that is inserted in the printer's memory card
adapter. Such a card is referred to as "card1:" and can be both
read from and written to. In order to retain its content when the
power to the printer is off, each SRAM memory card is fitted
with an internal battery.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 49

Chapter 6 File System

6.1

Printer's
Memory, contd.

+ Non DOS-Formatted Memory Cards ("rom:")
A non DOS-formatted, preprogrammed memory card can be

inserted to supplement or update the built-in ROM memory.

There are three types of ROM cards:

- Font Cardsare used to supplement the standard fonts in the
permanent memory.

- Font Install Cardsare used to install addition fonts in the
printer's permanent memory.

- Firmware Cardsare used to intall a new firmware version
(kernel) in the printer's permanent memory.

+ Other Memory Devices ("storage:")
The "storage:" device is a small and slow memaory device that is

used for special application. It should not be used for normal UBI
Fingerprint preogramming.

Current Directory
“Current directory” means the directory the UBI Fingerprint soft-

ware will use unless you specifically instruct it to use another
directory. By default, the current directory is "c:".

To appoint another directory as current directory, uSgiBIR
statement.

Example:

Changing directory from the default directory ("c:") to "tmp:" and
back.

10 CHDIR "tmp:"

90 CHDIR "c:"

Checking Free Memory

You can check the size of the memory in the current directory and
see how much free space there is by isSUFIGES statement in

the immediate mode.

Another way is to use tléREfunction to make a small instruction,
that returns the number of free bytes in the printer's temporary
memory, for example:

PRINT FRE(1)
yields e.g.:
391248

Providing More Free Memory

In order to free more memory space in the temporary memory, you
can use &€LEARstatement to empty all strings, set all variables to
zero andreset all arrays to default. If even more memory is required,
you will have to consider eitherkdLL some programs or files, or

to useREMOVE IMAGH delete some images stored in "c:" and/or
"tmp:". If the printer is not fitted with the maximum size memory,
you could also fit more or larger Flash or DRAM SIMM packages
after having made backup copies on the host.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 50

Chapter 6 File System

6.1 Printer's

Memory, contd.

6.2 Files

[J Fonts, Bar Codes and Images
Also see:

* Chapter 12 (Fonts)

« Chapter 13 (Images)

« Chapter 14 (Bar codes)

[J Current Directory
Also see:
« Chapter 6.1

Formatting the Permanent Memory
The printer's permanent memory ("c:") can be formatted either
partially or completely.

FORMAT "c:",A
erases all files in the device "c:" (hard formatting).

FORMAT "c:"

erases all files except those starting with a period (.) character (soft
formatting). System files are provided with such a period character,
e.g. .ubifrl.bin.

Formatting SRAM Memory Cards

An SRAM-type memory card, inserted in the printer's memory card
adapter, can be formatted to MS-DOS format by means of a
FORMATtatement, e.g.:

FORMAT "cardl:",208,512,A

File Types

A number of different types of files can be stored in the various parts
of the printer's memory. They can be divided into four main groups:

* Program Files

» Data Files

* Image Files

* Font Files

Object files, fonts, bar codes and images are not treated as files by
the UBI Fingerprint firmware.

File Names

The name of a file may consist of up to 30 characters including

extension, but possible restrictions imposed by the operating sys-
tem of the host should be considered if the file is to be transferred.
Refer to chapter 5.13 for a list of reserved file names.

Listing Files

The files stored in the printer's memory can be listed by means of
a FILES statement. By default, the files stored in the current
directory will be listed. Optionally, another directory can be se-
lected by adding a device reference toRH&ES statement, e.g.:

FILES lists all files in thecurrent directory.

FILES "c" lists all files in the readiwrite part of the
permanent memory

FILES "rom:" lists all files stored inthe read-only part of the

permanent memory (kernel) and in any in-
serted non DOS-formatted memory card.

FILES "tmp:" lists all files stored in the printer's temporary
memory.
FILES "card1:" lists all files stored in any inserted DOS-

formatted memory card.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 51

Chapter 6 File System

6.2 Files, contd.

[J Standard OUT channel
Also see:
* Chapter 7.1

6.3 Program Files

[J Creating, Saving, Copying, Killing
and Executing Program Files

Also see:

« Chapter 5.11 and 5.13

[0 Standard OUT Channel
Also see:
« Chapter 7.1

[Current Directory
Also see:
« Chapter 6.1

You canCOPYa file to the standard OUT channel, where it will be
printed on the screen of the host, e.g.:

COPY " [device]filename ", "uartl:"

The FILELIST.PRG program included in the UBI Fingerprint
firmware is used thlST aline-orientated file to the standard OUT
channel:

* On your terminal, enter:
RUN "rom:FILELIST.PRG "

» The printer will respond by prompting you to enter the name of
the file to be listed:
Filename?

» Enter the filename, possibly preceded by a directory reference,
e.g.

ok

Program File Types
Program files are used to run and control the printer and to produce

labels or other printouts. A program file is always composed of
numbered lines, although the numbers may be invisible during the
editing process (see chapter 5.4).

A special case of program files is startup files, i.e. files that
automatically start running when the printeris turned on (also called
“autoexec-files”). Startup files were explained in chapter 5.13
“Creating a Startup Program”.

Instructions
The following instructions are used for creating and handling
program files:

LOAD Copies aspecified program file to the printer's working
memory.
LIST Lists the program file in the working memory to the

standard OUT channel, usually the screen of the host.
MERGE Adds copy of a specified program file to the program
file currently residing in the printer's working memory.

RUN Executes the instruction in the program file. Must be
issued in the Immediate Mode, i.e. notin a numbered
line.

SAVE Saves acopy ofthe program filein the current directory

or, optionally, in another specified directory. If a file
with the same name already exists the that directory, it
will be replaced by the new file.

NEW Clears the working memory to allow a new program
file to be created.

COPY Copies a file to another name and/or directory.

KILL Deletes a file from the printer's permanent memory

("c:™), the printer's temporary memory (“tmp:") or
from a DOS-formatted memory card ("cardl:").

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 52

Chapter 6 File System

6.4 Data Files

6.5 Image Files

[J Images
Also see:
+ Chapter 14

Data File Types
Data files are used by the program files for storing various types of
data and can be divided into several subcategories:

» Sequential Input Files See chapter 7.4

* Sequential Output Files See chapter 8.3

* Sequential Append Files See chapter 8.3

* Random Access Files See chapters 7.5 and 8.4
Instructions

The following instructions are used in connection with the creation
and handling of data files:

OPEN Creates and/or opens a file for a specified
mode of access and optionally specifies
the record size in bytes.

CLOSE Closes at©OPENedile.

REDIRECT OUT Creates a file to which the output data will
be redirected (see chapter 8.2).

TRANSFERSET Sets up the transfer of data between two
files.

TRANSFER$ Executes the transfer of data between two
files according t&RANSFERSET

COPY Copies a file to another name and/or di-
rectory.

KILL Deletes a file.

LOC Returns the position in @PENedile.

LOF Returns the length in bytes of@RENed
file.

Image files in .PCX format can be downloaded and installed in the
printer's memory by means of the stateni®tGE LOAD

Image files in .PCX format that have been downloaded to the
printer's memory using Kermit file transfer protocol (see chapter
6.8) or stored in a DOS-formatted memory card cannot be used to
produce a printable image before they have been converted to UBI
Fingerprint's internal bitmap format by means of the following
instruction:

RUN "pcx2bmp <name of .PCX file> <name of image>"

Image files in Intelhex format, or the formats UBIOO, UBIOL,
UBIO2, UBIO3 or UBI10, can be downloaded and converted to
images using thBTORE IMAGENdSTORE INPUTstatements.

Images files can be listed by meandtfES statements.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 53

Chapter 6 File System

6.6 Font Files

[0 Single and Double-byte Fonts
Also see:
+ Chapter ??

[0 Font Install Card and Font Card
Also see:
* Chapter ??

6.7 Transferring Text
Files

6.8 Transferring
Binary Files
using Kermit

[J Standard IN and OUT Channels
Also see:
* Chapter 7.1

Note that there is a 30 sec. time
between the issuing of tT&RANSFER
KERMIT"R" statementand the start
the transmission.

Fontfiles are filesin TrueDoc (*.PFR) or TrueType (*.TTF) format
and contain scalable single or double-byte fonts complying with the
Unicode standard. The printer's standard complement of single-
byte fonts can be supplemented with additional fonts by downloading
font files to the printer using Kermit file transfer protocol (see
TRANSFER KERMITh chapter 6.8) or using dMAGE LOAD
statement. After a font file has been downloaded, the corresponding
font can be used immediately without any need for a reboot.

Additional fonts can also be installed using a Font Install Card or be
read from a Font Card. Note that since most double-byte fonts are
very large, there may not be enough memory space in the printer to
accommodate such fonts. In such a case, use a Font Card.

Font files can be listed by means &flRES statements.

Textfiles, e.g. program files and data files in ASCII format, can be
downloaded via a communication program in the host, e.g. Win-
dows Terminal (“Transfers; Send Text File”).

Text files can be transferred back to the host, e.g. for backup
purposes, bizOADIng the file and_ISTing it to a communica-
tion program in the host.

Font files and some image files come in binary format and can be
downloaded from the host to the printer or vice versa using the
Kermit file transfer protocol, which is commonly used for binary
transfer of data and is included in many communication programs,
e.g. DCA Crosstalk, MS Windows Terminal, and MS Works.

Warning!
Tests have shown that MS Windows Terminal versions 3.0 and 3.1 are
unable to receive a file from the printer, even if they are capable of sending
a file to the printer.

More information on the Kermit protocol can be found in the
manual of the communication program or in the reference volume
“Kermit— A File Transfer Protocol” by Frank da Cruz (Digital Press
1987, ISBN 0-932376-88-6).

TRANSFER KERMIT
TheTRANSFER KERMI&tatement allows you to specify direc-

tion (Send or Receive), file name, input device and output device.
By default, a file name designated "KERMIT.FILE" will be
transferred on the standard IN or OUT channel.

out Example:
R The printer is set up to receive a file on the standard IN channel.
of TRANSFER KERMIT "R"

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 54

Chapter 6 File System

6.8 Transferring
Binary Files
using Kermit,
contd.

[Arrays
Also see:
+ Chapter 6.10

6.9 Transferring
Files Between
Printers

Note:
Do not confuse CHECKSUM with CSUM,
see chapter 6.1 rrays”.

TRANSFER STATUS

After a file have been transferred by means GiRANSFER
KERMIT statement, the transfer can be checked usindRASS-
FER STATUSstatement. The statement will place the result of the
check into two one-dimensional arrays:

5-element numeric array (requires aDIM stmt):

Element O returns: Number of packets

Element 1 returns: Number of NAKs

Element 2 returns: ASCII value of last character
Element 3 returns: Last error

Element 4 returns: Block check type used
2-element string array (requires noDIM stmt):

Element O returns: Type of protocol, i.e. "KERMIT"
Element 1 returns: Last file name received
Example:

10 TRANSFER KERMIT 'R"

20 DIMA%(4)

30 TRANSFER STATUS A%,B$

40 PRINT A%(0), A%(1), A%(2), A%(4), A%(4)
50 PRINT B$(0), B$(1)

RUN

If you want to transfer a file from one printer to another printer, start
by transferring the file to the host. Then disconnect the first printer
and download the file to the second printer (or have the two printers
connected to separate serial ports). After the transfer of programs
between two connected printers is completed, you can check if the
transfer was successful by means GHECKSUMNction.

CHECKSUM

The CHECKSUMnNction uses an advanced algorithm on parts of
the printer's internal code. Thus, calculateGRHECKSUDN the
program in the transmitting printer before the transfer. After the
transfer is completed,OADthe program in the receiving printer
and perform the same calculation. If the checksums are identical,
the transfer was successful.

Note that the algorithm was changed in UBI Fingerprint 4.0. Thus, the
CHECKSURdinction will return other checksums in printers using earlier

versions of UBI Fingerprint than 4.0 compared to printers using 4.0 or|later
versions. If possible, use the same UBI Fingerprint version in both printers.

Example:

This example calculates the checksum in the lines 10—-90000 in the
program "DEMO.PRG".

LOAD "DEMO.PRG"

PRINT CHECKSUM (10,90000)

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 95

Chapter 6 File System

6.10 Arrays

Variables containing related data may be organized in arrays. Each
value in an array is called an element. The position of each element
is specified by a subscript, one for each dimension (max 10). Each
array variable consists of a name and a number of subscripts
separated by commas and enclosed by parentheses, for example
ARRAY$(3,3,3) .

The number of subscripts in an array variable, the first time
(regardless of line number) it is referred to, decides its number of
dimensions. The number of elements in each dimension is by
default restricted to four (No. 0 — 3).

Four instructions are specifically used in connection with arrays:

DIM Specifies the size of an array in regard of
elements and dimensions.

SORT Sorts the elements in a one-dimensional
array in ascending or descending order.

SPLIT Splits a string into an array.

CSUM Returns the checksum for a string array.

DIM

If more than 4 elements are needed, or if you want to limit the size
of the array, ®IM statement can be used to specify the size of the
array in regard of the number of dimensions as well as the number
of elements in each dimension. In most cases, one- or two-
dimensional arrays will suffice.

This example shows how three 1-dimensional, 5-element arrays
can be used to return 125 possible combinations of text strings:
10 DIM TYPES$(4),COLOURS(4),SIZE$(4)

20 TYPE$(0)="SHIRT"

30 TYPE$(1)="BLOUSE"

40 TYPE$(2)="TROUSERS"

50 TYPE$(3)="SKIRT"

60 TYPE$(4)="JACKET"

70 COLOUR$(0)="RED"

80 COLOUR$(1)="GREEN"

90 COLOUR$(2)="BLUE"

100 COLOUR$(3)="RED"

110 COLOURS$(4)="WHITE"

120 SIZE$(0)="EXTRA SMALL"

130 SIZE$(1)="SMALL"

140 SIZE$(2)="MEDIUM"

150 SIZE$(3)="LARGE"

160 SIZE$(4)="EXTRA LARGE"

170 INPUT"Select Type (0-4): ", A%

180 INPUT"Select Colour (0-4): ", B%

190 INPUT"Select Size (0-4): ", C%

200 PRINT TYPE$(A%)+", "+COLOURS(B%)+", "+SIZE$(C%)
RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 56

Chapter 6 File System

6.10 Arrays, contd.

SORT

The SORTstatement is used to sort a one-dimensional array in
ascending or descending order according the character's ASCII
values in the Roman 8 character set. You can also choose between
sorting the complete array or a specified interval. For string arrays,
you can select by which character position the sorting will be
performed.

This example shows how one numeric array is sorted in ascending
order and one string array is sorted in descending order according
to the fifth character in each element:
10 FORQ%=0TO3
20 A$=STR$(Q%)
30 ARRAY%(Q%)=1000+Q%:ARRAY$(Q%)="No. "+A$
40 NEXT Q%
50 SORT ARRAY%,0,3,1
60 SORT ARRAY$,0,3,-5
70 FORI%=0TO3
80 PRINT ARRAY%(1%), ARRAY$(1%)
90 NEXTI%
RUN
yields:
1000 No.3
1001 No.2
1002 No.1
1003 No. O

SPLIT

The SPLIT function is used to split a string expression into
elements in an array and to return the number of elements. A
specified character indicates where the string will be split.

In this example a string expression is divided into six parts by the
separator character “/” (ASCII 47 dec.) and arranged in a six
element array:
10 A$="ONE/TWO/THREE/FOUR/FIVE/SIX"
20 X$="ARRAY$"
30 DIMARRAY$(6)
40 B%=SPLIT(AX,47)
50 FOR C%=0TO (B%-1)
60 PRINT ARRAY$(C%)
70 NEXT
RUN
yields:
ONE

THREE
FOUR
FIVE
SIX

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 57

Chapter 6 File System

6.10 Arrays, contd. CSUM _ .
The checksum for string arrays can be calculated according to one
Note! of two different algorithms (LRC or DRC) and returned by means

Do not confuse CSUMwith CHECKSUM, of the CSUMtatement.
see chapter 6.9.

In this example, the checksum of a string array is calculated
according both to the LRC (Logitudinal Redundancy Check) and
the DRC (Diagonal Redundancy Check) algorithms:
10 FORQ%=0TO3
20 A$=STR$(Q%)
30 ARRAY$(Q%)="Element No. "+A$
40 NEXT
50 CSUM 1,ARRAY$,B%:PRINT "LRC checksum: ";B%
60 CSUM 2,ARRAY$,C%:PRINT "DRC checksum: ";,C%
RUN
yields:
LRC checksum: 0
DRC checksum: 197

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 58

Chapter 7

/. Input to UBI Fingerprint

7.1 Standard I/O
Channel

[0 Output from UBI Fingerprint
See:
+ Chapter 8

7.2 Input from Host
(Std IN Channel only)

7.3 Input from Host
(Any Channel)

The standard IN and standard OUT channels are the default
channels for input to the printer or output from the printer respec-
tively (in both cases "uartl:" by default). In most instructions, you
canoverride the standard IN or OUT channel by specifying another
channel. Usually, the same channel is used for both input and
output, but different channels can be specified.

SETSTDIO

You can appoint any of the following communication channels as
standard INand/or standard OUT channel by means of the
SETSTDIOstatement:

Standard IN channel Standard OUT channel
0 = "console:* 0 = "console:*

1 = "uartl:" (default) 1 = "uartl:" (default)
2 = "uart2:" 2 = "uart2:"

4 = "centronics?”

/. Do not select "console:" as both std in and out channel, since it
would onIy make characters entered on the printer's key-board
appear in the display.

?/. The parallel communication channel “centronics:" can only be
used for input (one-way communication only).

The std IN channel is used for sending instructions and data from
the hostto the printer in order to control the printer in the immediate
mode, to write programs in the programming mode, to download
program files and to transmit input data.

Some instructions receives data on the std IN channel only:

INKEY$ Reads the 1:st character in the receive
buffer.

INPUT Receives input data during execution of a
program.

LINE INPUT Assigns an entire line to a string variable.

The following instructions are used to receive input fiamy
communication channel (incl. the std IN channel). The same
instructions are also used to read sequential files, see chapter 7.4:

OPEN Opens a channel for sequential INPUT.

INPUT# Receives input data during execution of a
program on the specified channel.

INPUTS Reads a string of data from the specified
channel.

LINE INPUT# Assigns an entire line from the specified
channel to a string variable.

CLOSE Closes the channel.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 59

Chapter 7 Input to UBI Fingerprint

14

Input from a
Sequential File

Refer to chapter 7.3 for a summary of instructions used for reading
sequential files.

OPEN

Before any data can be read from a sequential file (or a communi-
cation channel other than the std IN channel), it muSiRieNed

for INPUT and assigned a number, which is used when referred to
in otherinstructions. The number matkié optional. Up to 10files

and devices can be open at the same time.

Example: The file "ADDRESSES" is opened for input as number 1:
OPEN "ADDRESSES" FOR INPUT AS #1

After a file or device has be@PENedor INPUT, you can use the
following instructions for reading the data stored in it:

INPUT#

Reads a string of data to a variable. Commas can be used to assign
portions of the input to different variables. When reading from a
sequential file, the records can be read one after the other by
repeatedNPUT# statements. The records are separated by com-
mas in the string. Once a record has been read, it cannot be read
again until the file has be&@1L.OSEdand therOPENedgain.

Example (reads six records in a file and places the data into six
string variables):

10 OPEN "QFILE" FOR OUTPUT AS #1

20 PRINT#1, "Record A","a","b","c"

30 PRINT#1, "Record B",1,2,3

40 PRINT#1, "Record C",'x";"y""z"

50 PRINT #1, "Record D,Record E,Record F*
60 CLOSE#1

70 OPEN "QFILE" FOR INPUT AS #1

80 INPUT#1,A$

90 INPUT#1,B$

100 INPUT#1,C$

110 INPUT #1, D$,E$,F$

120 PRINT A$

130 PRINTB$

140 PRINTC$

150 PRINT D$

160 PRINTES$

170 PRINTF$
180 CLOSE#1
RUN

yields:
Record A a b c
RecordB 1 2 3
Record C xyz
Record D
Record E
Record F

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 60

Chapter 7 Input to UBI Fingerprint

14

Input from a
Sequential File,
contd.

INPUT$
Reads a specified number of characters from the specified sequen-

tial file or channel. (If no file or channel is specified, the data on the
standard IN channel will be read). The execution is held up waiting
for the specified number of characters to be received. If a file does
not contain as many characters as specified iIINIREI TS state-
ment, the execution will be resumed as soon as all available
characters in the file have been received.

Sequential files are read from the start and once a number of
characters have been read, they cannot be read again until the file
is CLOSEdandOPENedagain. SubsequeltPUT$ statements

will start with the first of the remaining available characters.

Example (reads portions of characters from aGlleENeds #1).
10 OPEN "QFILE" FOR OUTPUT AS #1
20 PRINT #1, "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 CLOSE#1
40 OPEN"QFILE" FOR INPUT AS #1
50 A$=INPUT$(10,1)
60 B$=INPUT$(5,1)
70 C$=INPUT$(100,1)
80 PRINT "Record 1:",A$
90 PRINT "Record 2:",B$
100 PRINT "Record 3:",C$
110 CLOSE#1
RUN
yields:
Recordl: ABCDEFGHIJ
Record2: KLMNO
Record3: PQRTSUVWXYZ

LINE INPUT#
Works similar tolNPUT#, but reads an entire line including all

punctuation marks to a string variable instead of reading just one
record. Note that commas inside a string will be regarded as
punctuation marks and will not divide the string into records
(compare wWitHNPUT#).

Example (reads a complete line in a file and places the data into a
single string variable):
10 OPEN "QFILE" FOR OUTPUT AS #1
20 PRINT #1, "Record A,Record B,Record C"
30 CLOSE#1
40 OPEN"QFILE" FOR INPUT AS #1
50 LINEINPUT #1, A$
60 PRINT A$
70 CLOSE#1
RUN
yields:
Record A,Record B,Record C

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 61

Chapter 7 Input to UBI Fingerprint

74 Input froma CLOSE .
S tial Fil When afile is no longer used, it can be closed by meaG @&E
equental re, statement containing the same reference number as the correspond-
cont'd. ing OPENstatement. AlENDstatement also closes all open files.

A few instructions facilitate the use of files for sequential input:

EOF

07 Relational Operators The EOFfunction can connection with the statemdNiBUT#,

Also see: LINE INPUT# andINPUTS$ to avoid the error conditictinput

* Chapter 4.9 past end” When theeOFfunction encounters the end of a file, it
returns the value -1 (TRUE). If not, it returns the value O (FALSE).
Example:

10 DIM A%(10)

20 OPEN"DATA"FOR OUTPUT AS #1
30 FORI%=1TO 10

40 PRINT#1, 19%+1123

50 NEXT 1%

60 CLOSE#1

70 OPEN'DATA"FOR INPUT AS #2
80 1%=0

90 WHILE NOT EOF(2)

100 INPUT #2, A%(1%):PRINT A%(I%)
110 1%=1+1:WEND

120 IF EOF(2) THEN PRINT "End of File"
RUN

LOC (Location)
The LOCfunction returns the number of 128-byte blocks, that have
been read or written since the file Vi&BENed

This example closes the file "ADDRESSES" when record No. 100
has been read from the file:
10 OPEN "ADDRESSES" FOR INPUT AS #1

200 IFLOC(1)=100 THEN CLOSE #1

LOF (Length-of-File)
The LOF function returns the length in bytes of an OPENed file.

The example illustrates how the length of the file "Pricelist” is
returned:

10 OPEN'"PRICELIST" AS #5

20 PRINT LOF(5)

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 62

Chapter 7 Input to UBI Fingerprint

7.5 Input froma
Random File

The following instructions are used in connection with input from

random files:

OPEN Creates and/or opens a file RANDOM
access and optionally specifies the record
length in bytes.

FIELD Creates a random buffer, divides it into
fields and assigns a variable to each field.

GET Reads a record from the buffer to the file.

CLOSE Closes ait©OPENH file.

LOC Returns the number of the last record read
by the use of &ET statements in the
specified file.

LOF Returns the length in bytes of the speci-
fied file.

OPEN

To read the data stored in a random file, you must OPEN it.

The example in this chapter uses the random file created in chapter
8.4, which can be graphically illustrated like this:

Record 1 Record 2 Record 3

ABIC] [|DIE[F[1[2[3[4[5]6]x[¥[z][| [Q[R[S[8]4[5[3]1] [R[S[TT[[u[v]w[9[8][7]6]5]4

[0 VAL function
Also see:
« Chapter 9.2

123 411234(123456|1234/1234(123456(1234/1234{123456
Field1 Field2 Field3 Field1 Field2 Field3 Field1 Field2 Field3

10 OPEN "ZFILE" AS #1 LEN=14

The appendingEN=14refers to the length of each record which
is 14 bytes (4 + 4 + 6). Do not confuse LN parameter in the
OPENstatement with theENfunction, see chapter 9.2.

FIELD
Then enter the same field definitions as when the data was put into

the file:
20 FIELD#1, 4 AS F1$, 4 AS F2$, 6 AS F3%

GET
Use aGETstatement to copy the desired record from the file. Note

that you can select whatever record you want, as opposed to
sequential files, where you reads the records one after the other. In
this case, we will copy record No. 1 (compare with the illustration
above).

30 GET#11

If you like, you can copy data from other records in the same file by
issuing additionaBE Tstatements with references to the records in
guestion.

Now you can use the variables assigned to the fields in the record
by means of th&IELD statement to handle the data. Possible
numeric expressions converted to string format before being put
into the record can now be converted back to numeric format using
VAL functions. In our example, we will simply print the data on the
screen:

40 PRINT F1$,F2$,F3$

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 63

Chapter 7 Input to UBI Fingerprint

75 InpUt from a I(ili-noasllE close the file and execute:
Random File, o o '
cont'd. RUN

yields:
ABC DEF 123456

Two instructions facilitate the use of random files:

LOC (Location)
TheLOCfunction returns the number of the last record read by the
use ofGETstatement.

This example closes the file "ADDRESSES" when record No. 100
has been read from the file:
10 OPEN"ADDRESSES"AS #1

200 IFLOC(1)=100 THEN CLOSE #1

LOF (Length-of-File)
TheLOFfunction returns the length in bytes of@RENedile.

The example illustrates how the length of the file "Pricelist" is
returned:

10 OPEN'"PRICELIST" AS #5

20 PRINT LOF(5)

7.6 |nput from All UBI Fingerprint 7.xx-compatible EasyCoder printers are pro-
Printer vided with a built-in keyboard containing a set of numeric keys
nnters supplemented with a number of function keys. There are also
Keyboard separate alphanumeric keyboards available as options

1/, Input from arexternal alphanumeric Note that input from the printer's keyboard excludes_ the @3Bl of
keyboard is a case of ASCII input on &KEY...GOSUB statements (see chapter 5.8) and vice versa.

g?{f‘;umcaﬂon channel, see ChalDte"‘l’he following instructions are used in connection with input from

the printer's keyboard:

OPEN Opens the device "console:" for sequen-
tial INPUT.

INPUT# Reads a string of data to a variable.

INPUTS$ Reads a limited number of characters to a
variable.

LINE INPUT# Reads an entire line to a variable

CLOSE Closes the device.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 64

Chapter 7 Input to UBI Fingerprint

7.6 Input from The table below shows which ASCII characters the various keys
Printer’ will produce in unshifted and shifted position. However, the
nnters keyboard can be remapped (see later in this chapter).
Keyboard, contd. potaui ascil decimal values
Key | Unshifted| Shifted | Notes
Shift - - Adds 128 to the value of an unshifted key
F1 1 129
F2 2 130
F3 3 131
F4 4 132
F5 5 133
C 8 136
Enter 13 141 Unshifted Enter = Carriage Return
Feed 28 156
Setup 29 157
Pause 30 158 Shift+Pause is by default Break from keyboard
Print 31 159
: 46 174
0 48 176
1 49 177
2 50 178
3 51 179
4 52 180
5 53 181
6 54 182
7 55 183
8 56 184
9 57 185

The printable characters actually generated by the respective ASCII
value depend on the selected characterNs&@EENASCID and
possibleMAPstatements, see chapter 9.1.

In case ofNPUT# andLINE INPUT# , the input will not be
accepted until a carriage returriE@ter>) is issued.

This example demonstrates how the printable character and decimal
ASCllvalue of various keys on the printer's keyboard can be printed
to the screen of the host. You can break the program by holding
down the Shift> key and pressing Rause-.

10
20
30
40
50
60
70

RUN

PRINT "Character", "ASCII value"
OPEN "console:" FOR INPUT AS 1
A$=INPUTS$(1,1)

B%=ASC(A%)

PRINT A$, B%

GOTO 30

CLOSE 1

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 65

Chapter 7 Input to UBI Fingerprint

7.7 Communication
Control

[0 Communication
Also see:
» Technical Manual, Setup Parameters

The following instruction are used to control the communication
between the printer and the host or other connected devices:
BUSY/READY Transmits a busy or ready signal on the
specified communication channel.
ON LINE/OFF LINE Controls the&sELECTsignal on the paral-
lel communication channel ("centronics:").
VERBON/VERBOFF Turns printer's verbosity on/off.
SYSVAR(18) Selects the printer's verbosity level.

BUSY/READY
By means of these two statements, you can let the program
execution turn a selected communication channel on or off. There
is a difference between serial and parallel communication:
» Serial communication:
The type of busy/ready signal is decided in the Setup Mode (Ser-
Com; Flowcontrol), see the Installation & Operation manual.
- When aBUSYstatement is executed, the printer sends a busy
signal , e.g. XOFF or RTS/CTS low.
- When &READ$tatementis executed, the printer sends aready
signal , e.g. XON or RTS/CTS high.
» Parallel communication:
The parallel Centronics communication channel us&3iseY
READ$tatements to control the PE (paper end) signal on pin 12:

- BUSY = PE high

- READY = PE low

The status of the PE signal can be readRRRATATstatement,
e.g.:

IF (PRSTAT AND 4) GOTO.....ELSE GOTO.....

Note thatissuingREAD$tatement is no guarantee that the printer
will receive data, since there may be other conditions that hold up
the reception, e.g. a full receive buffer.

ON LINE/OFF LINE

These two statements is only used for the parallel Centronics
communication channel and controls the SELECT signal (pin 13 on
the parallel interface board):

- ONLINE4 setsthe SELECT signal high (default)

- OFFLINE 4 sets the SELECT signal low

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 66

Chapter 7 Input to UBI Fingerprint

7.7 Communication
Control, contd.

[0 Standard INJOUT Channel
Also see:
« Chapter 7.1

VERBON/VERBOFF

These two statements control the printer's verbosity, i.e. the re-
sponse fromthe printer on the standard OUT channelto instructions
received on the standard IN channel. Both can be substituted by
SYSVAR (18) , see below.

By default, verbosity is onVERBON The verbosity level is
controlled by the system varial3& SVAR(18).

All responses will be turned suppressed wheitRBOFIstate-
ment is issued. HoweveVERBOFFoes not suppress question
marks and prompts displayed as a result of e.iNRD'T state-
ment. Instructions likeDEVICES FILES, FONTS IMAGES
LIST andPRINT will also work normally.

SYSVAR
The system variable SYSVAR is used for many purposes, one of
which is to control the verbosity level.

The verbosity level can be selected or read by specifying bits in
SYSVAR(18):

All levels enabled -1

No verbosity 0

Echo received characters 1

"Ok" after correct command lines 2
Echo/NPUT characters from communication port 4

Error after failed lines 8

The levels can be combined, so e.g. 3 meansiboltio received
characters”and“Ok after correct command line”

By default, all levels are enabled, B¥SVAR(18) = -1
VERBOIStatement enables all levels, 8&.SVAR(18) = -1
VERBOFItatement disables all levels, BYSVAR(18) =0 .

When the printer receives a character, e.g. from the keyboard of the
host, by default the same character is echoed back on the standard
OUT channel, i.e. usually to the screen of the host. When an
instruction has been checked for syntax errors and accepted, the
printer returns “Ok”. Else an error message is returned.

This example demonstrates how the printer is set to only return
“Ok” after correctlines (2) or error messages after failed lines (8):
SYSVAR(18) = 10

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 67

Chapter 7 Input to UBI Fingerprint

7.8 Background
Communication

[0 Memory and Buffers
Also see:
« Chapter 6.1

Background communication means thatthe printer receives dataon
an IN channel while the program runs in aloop. The data are stored
in a buffer, that can be emptied at an appropriate moment by the
running program, which then can use the data. Note that back-
ground communication buffers are not the same as the receive
buffers. Any input received on a communication channel is first
stored in the channel's receive buffer, awaiting being processed.
After processing, the data may be stored in the background commu-
nication buffer.

The following instructions are used in connection with background
communication:
COMSET Decides how the background reception
will work in regard of:
- Communication channel.
- Start character(s) of message string.
- End character(s) of message string.
- Characters to be ignored.
- Attention string thatinterrupt reception.
- Maximum number of characters to be
received.
ON COMSET GOSUB Branches the program execution to a sub-
routine when background reception on a
specified channel is interrupted.

COMSET ON Empties the buffer and turns on back-
ground reception on the specified chan-
nel.

COMSET OFF Turns off background reception on the
specified channel and empties the buffer.

COM ERROR ON Enables error handling on a specified
channel.

COM ERROR OFF Disables error handling on a specified
channel (default).

COMSTAT Reads the status of the buffer of a speci-
fied channel.

COMBUF$ Reads data in the buffer of a specified
channel.

To set up the printer for background communication, proceed as

follows:

 Start by enabling the error handling for background communi-
cation using &£0M ERROR Qkatement and specifying the
communication channel you intend to use:

0 ="console:"
1 ="uartl:"
2 ="uart2:"

4 ="centronics:"

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 68

Chapter 7 Input to UBI Fingerprint

7.8 Background
Communication,
cont'd.

O CHR$ Function
Also see:
+ Chapter 9.2

It may be useful to create a few messages indicating what have
caused the interruption.

Example:

Error handling is enabled for communication channel "uart1:"
and messages will be printed to the standard out channel for all
conditions that can be detected b @MSTAfNnction.

10 COMERROR 10N

20 A$="Max. number of characters"

30 B$="End char. received"

40 C$="Communication error"

50 D$="Attention string received"

Continue with &£OMSETstatement specifying:

- Which communication channel will be used (0—4, see above).

- Which character, or string of characters, will be used to tell the
printer to start receiving data?

- Which character, or string of characters, will be used to tell the
printer to stop receiving data?

- Which character or characters should be ignored, i.e. filtered
out from the received data?

- Which character, or string of characters, should be used as an
attention string, i.e. to interrupt the reception.

Start, stop, ignore and attention characters are selected accord-
ing to the protocol of the computing device that transmits the
data. Non printable characters, e.g. STX (Start of Text; ASCII1 02
dec.) and ETX (End of Text; ASCII 03 dec.) can be selected by
means of @HR$unction. To specify no character, use an empty

string, i.e. ™.

- How many characters should be received before the transmis-
sion is interrupted? This parameter also decides the size of the
buffer, i.e. how much of the temporary memory will be
allocated.

Example (designed to make the example easy to run rather than
to illustrate a realistic application):

Background reception on the serial channel "uartl1:".

Start character: A

End character: CHRS$ (90) i.e. the character “Z”".

Characters to be ignored: #

Attention string: BREAK

Max. number of characters in buffer: 20

60 COMSET 1,"A",CHR$(90),"#","BREAK" 20

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 69

Chapter 7 Input to UBI Fingerprint

7.8 Background y
Communication,
cont'd.

Decide what will happen, when the reception is interrupted, by
specifying a subroutine to which the execution will branch,
using anON COMSET GOS&i&ement. Interruption will oc-
cur when any of the following conditions is fulfilled:

- an end character is received.

- an attention string is received.

- the maximum number of characters have been received.

Example:

When the reception of data on communication channel 1
("uartl:") is interrupted, the execution will branch to a subrou-
tine starting on line number 1000.

70 ONCOMSET 1 GOSUB 1000

After returning fromthe subroutine, uSE@MSET Odtatement
to empty the buffer and turn on background reception again. e.g.:
80 COMSET 10N

When the reception has been interrupted, it is time to see what
the buffer contains. You can read the content of the buffer, e.g.
to a string variable, usingGOMBUFfnction:

1000 QDATA$=COMBUF$(1)

TheCOMSTATunction can be used to detect what has caused
the interruption. Use the logical operatlDto detect the
following four reason of interruption as specifiedB@MSET

- Max. number of characters received (2).

- End character received (4).

- Attention string received (8).

- Communication error (32).

Example:

The various cases of interruption makes different messages to be
printed to the standard OUT channel.

1010 IF COMSTAT(1) AND 2 THEN PRINT A$

1020 IF COMSTAT(1) AND 4 THEN PRINT B$

1030 IF COMSTAT(1) AND 8 THEN PRINT C$

1040 IF COMSTAT(1) AND 32 THEN PRINT D$

If you want to temporarily turn off background reception during
some part of the program execution, you can iSSCOMSET
OFFstatement and then turn off the background reception again
using a newCOMSET Ostatement.

Note that an\COMSET ON/OFBtatement empties the buffer
and the content will be lost if you do not read it first, using a
COMBUFInction.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 70

Chapter 7 Input to UBI Fingerprint

1.8

Background
Communication,
cont'd.

» After adding a few lines to print the content of the buffer (line
1050) and to create a loop that waits from input from the host
(line 90), the entire example will look like this. You can run the
example by typinRUNand pressingEnter> on the keyboard
of the host. Then enter various characters and see what happens,
comparing with the start character, stop character, ignore char-
acter, attention string, and max. number of characters param-
eters in th&€ OMSE$tatement.

NEW

10 COMERROR 10N

20 A$="Max. number of char. received"

30 B$="End char. received"

40 C$="Attn. string received"

50 D$="Communication error"

60 COMSET 1, "A",CHR$(90),"#","BREAK",20
70 ONCOMSET 1 GOSUB 1000

80 COMSET 10N

90 IFQDATA$=""THEN GOTO 90

100 END

1000 QDATA$=COMBUF$(1)

1010 IF COMSTAT(1) AND 2 THEN PRINT A$
1020 IF COMSTAT(1) AND 4 THEN PRINT B$
1030 IF COMSTAT(1) AND 8 THEN PRINT C$
1040 IF COMSTAT(1) AND 32 THEN PRINT D$
1050 PRINT QDATAS$

1060 RETURN

RUN

Two instructions facilitate the use of background communication:

LOC (Locate)

The LOCfunction returns the status of the receive or transmitter

buffers in arOPENedcommunication channel:

- Ifthe channel iI©PENedor INPUT, the remaining number of
characters (bytes) to be read from the receive buffer is returned.

- Ifthe channel iI©PENedor OUTPU the remaining free space
(bytes) in the transmitter buffer is returned.

The number of bytes includes characters that wiMB&pedas
NULL.

This example reads the number of bytes which remains to be
received from the receiver buffer of "uart2:":

10 OPEN "uart2:" FOR INPUT AS #2

20 A%=LOC(2)

30 PRINT A%

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 71

Chapter 7 Input to UBI Fingerprint

1.8

79

Background
Communication,
cont'd.

RS 422
Communication

LOF (Length-of-File)

The LOF function returns the status of the buffers in an OPENed

communication channel:

- If a channel i©OPENedor INPUT, the remaining free space
(bytes) in the receive buffer is returned.

- Ifachannel i©PENedor OUTPU Tthe remaining number of
characters to be transmitted from the transmitter buffer is
returned.

The example shows how the number of free bytes in the receive
buffer of communication channel "uart2:" is calculated:

10 OPEN "uart2:" FOR INPUT AS #2

20 A%=LOF(2)

30 PRINT A%

80 COMSET 1 ON

90 IF QDATAS$=""THEN GOTO 90

100 END

1000 QDATA$=COMBUF$(1)

1010 IF COMSTAT(1) AND 2 THEN PRINT A$
1020 IF COMSTAT(1) AND 4 THEN PRINT B$
1030 IF COMSTAT(1) AND 8 THEN PRINT C$
1040 IF COMSTAT(1) AND 32 THEN PRINT D$
1050 PRINT QDATAS$

1060 RETURN

RUN

As an option, the printers can be fitted with interfaces board that
provides either RS 422 non-isolated or RS 422 isolated on "uart2:".

In neither of these protocols, there are any lines for hardware
handshake (RTS/CTS).

RS 422 is a point-to-point four-line screened cable connection
between a host computer and a printer, or between two printers.
Two lines transmitdata and the other two receive data. No hardware
handshake can be used (4 lines only), but XON/XOFF or ENQ/
ACK can be used if so desired.

» Fit straps and driver circuits according to the installation
instructions for the interface board.
» Set the printer's flowcontrol setup to:

RTSICTS: Always Disable
ENQ/ACK: Enable or Disable
XON/XOFF, Data to host: Always Enable
XON/XOFF, Data to host: Enable or Disable

e Select "uart2:" as standard I/O channel, 8E§ISTDIO 2,2

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 72

Chapter 7 Input to UBI Fingerprint

7.10 External
Equipment

Industrial Interface
The UBI Fingerprint firmware not only allows you to control the

printer, but various types of external equipment, like conveyor
belts, gates, turnstiles, control lamps etc. can be controlled as well
by the program execution. Likewise, the status of various external
devices can be used to control both the printer and other equipment.
The computing capacity of the UBI Fingerprint printer can thus be
used to independently control workstations without the require-
ment of an on-line connection to a host computer.

What makes this possible is the Industrial Interface Board, which
is available as an option. The board contains a female DB-44
connector with 8 digital IN ports, 8 digital OUT ports and 4 OUT
ports with relays.

There are two instruction solely used in connection with the
Industrial Interface Board:

PORTOUT ON/OFF
This statement sets one of the four relays OUT ports or one of the

digital OUT ports to either on or off.

PORTIN
This function returns the status of a specified port.

Refer to the installation instructions of the Industrial Interface
Board for more details.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 73

Chapter 8

8. Output from UBI Fingerprint

8.1 Output to Std
OUT Channel

[0 Input to UBI Fingerprint
See:
« Chapter 7

[J Standard Error-Handling
Also see:
« Chapter 16.1

[0 Verbosity
Also see:
* Chapter 7.7

The std. OUT channel is used for returning the printer's responses
to instructions received from the host. That is why the same device
usually is selected both standard IN and OUT channel (see
SETSTDIOstatement in chapter 7.1). By default, "uartl:" is std
OUT channel.

After every instruction received on the std IN channel, the printer
will either return “Ok” or an error message (e.g. “Feature not
implemented” or “Syntax Error”) on the std. OUT channel. If the
std OUT channel is connected to the host computer, this message
will appear on the screen.

The response can be turned off/on by meaviE BBOFFVERBON
statements, the verbosity level can be select&WSVAR(18),
and the type of error message can be select8Y 8y AR(19).

Some instructions return data on the std OUT channel only:

DEVICES Lists all devices (also see chapter 4.10).

FILES Lists all files in the current directory or
another specified directory (also see chap-
ter 6.2).

FONTS Lists allfontsinthe printer's entire memory
(also see chapter 12.4).

IMAGES Lists all images in the printer's entire
memory (also see chapter 14.4).

LIST Lists the current program in its entity or
within a specified range of lines (also see
chapter 5.4.

PRINT Prints the content of numeric or string

expressions and the result of functions
and calculations (see below).

PRINTONE Prints characters entered as ASCII values
(see below).

PRINT (or ?)

The PRINT statement prints a line on the std OUT channel, i.e.
usually the screen of the host. TRRINT statement can be
followed by one or several expressions (string and/or numeric).

If the PRINT statement contains several expressions, these must be

separated by either commas (,) semicolons (;), or plus signs (+, only

between string expressions):

* A comma places the expression that follows at the start of next
tabulating zone (each zone is 10 characters long).

Example:
PRINT "Price","$10" yields:
Price $10

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 74

Chapter 8 Output from UBI Fingerprint

8.1

Output to Std
OUT Channel,

cont'd.

PRINT (or ?), cont'd.
A semicolon places the expression that follows immediately
adjacent to the preceding expression.

Example:
PRINT "Price_";"$10" yields:
Price_$10

* A plus sign places the strirgpression that follows immedi-
ately adjacent to the preceding string expression (plus signs can
only be used between two string expressions)'

Example:
PRINT "Price_"+"$10" yields:
Price_$1

» Each line is terminated by a carriage return, as to make the next
PRINT statement being started on a new line. However, if a
PRINT statement is appended by a semicolon, the carriage
return will be suppressed and n@RINT statement will be
printed adjacently to the preceding one.

Example:

10 PRINT "Price_";"$10";

20 PRINT "_per_dozen"

RUN yields:

Price_$10_per_dozen

+ A PRINT statement can also be used to return the result of a
calculation or a function.

Example:

PRINT 25+25:PRINT CHR$ (65) Yields:
50

A

 If the PRINT statement is not followed by any expression, a
blank line will be produced.

PRINTONE
ThePRINTONEstatement prints the alphanumeric representation

of one or several characters specified by their respective ASCII
values (according to the currently selected character sblASe
statement in chapter 9.1) to the standard OUT channel.

The PRINTONEstatement is useful e.g. when a certain character
cannot be produced from the keyboard of the host.

PRINTONEs very similar to th®RINT statement and follows the
same rules regarding separating characters, i.e. commas and semi-
colons).

Example:
PRINTONE 80;114;105;99;101,36;32;49;48 yields:
Price $ 10

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 75

Chapter 8 Output from UBI Fingerprint

8.2

Redirecting
Output from

Std Out Channel
to File

As described in chapter 8.1, by default some instructions return data
on the standard OUT channel. However, it is possible to redirect
such output to a file using tRREDIRECT OUEtatement, as de-
scribed below.

REDIRECT OUT
This statement can be issued with or without an appending string

expression:
* REDIRECT OUT <sexp>
The string expression specifies the name of a sequential file that
will be created and in which the output will be stored. Obviously,
in this case no data will be echoed back to the host.
 REDIRECT OUT
When no file name appends the statement, the output will be
directed back to the std. OUT channel.

Example:

The output is redirected to the file "IMAGES.DAT". Then the
images in the printer's memory is read to the file after which the
outputis redirected back to the standard OUT channel. Thenthefile
is copied to the communication channel "uart1:" and printed on the
screen of the host.

10 REDIRECT OUT "IMAGES.DAT"

20 IMAGES

30 REDIRECT OUT
RUN

Ok

COPY "IMAGES.DAT","uart1:"

yields e.g.:
CHESS2X2.1 CHESS4X4.1
DIAMONDS.1 UBI.1
UBI.2 UBI010.1
UBI010.2

1543700 bytes free 307200 bytes used
Ok

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 76

Chapter 8 Output from UBI Fingerprint

8.3

Output and
Append to
Sequential Files

The following instructions are used in connection with output to

sequential files:

OPEN Creates and/or opens a file for sequential
OUTPUDr APPENI2Nd optionally speci-
fies the record length in bytes.

PRINT# Prints data entered as numeric or string
expressions to the specified file.

PRINTONE# Prints data entered as ASCII values to the
specified file.

CLOSE Closes aitOPENedile.

LOC Returns the number of 128-byte blocks,
that have been written since the file was
OPENed

LOF Returns the length in bytes of the speci-
fied file.

To print data to a sequential file, proceed as follows:

OPEN

Before any data can be written to a sequential file, it must be opened.
Use th@OPEMtatement to specify the name of the file and the mode
of accessQUTPUDr APPENR

* OUTPUTmeans that existing data will be replaced.

* APPENDneans that new data will be appended to existing data.

In the OPENSstatement you must also assign a number to the
OPENedfile, which is used when the file is referred to in other
instructions. The number mark (#) is optional. Optionally, the
length of the record can also be changed (default 128 bytes). Up to
10 files and devices can be open at the same time.

Examples:

Thefile"ADDRESSES" is opened for outputand giventhe reference
number 1:

OPEN "ADDRESSES FOR OUTPUT AS #1

The file "PRICELIST" is opened for append and is given the
reference number 5:
OPEN "PRICELIST" FOR APPEND AS #2

After a file or device has be@PENedor OUTPUDr APPEND
you can use the following instructions for writing data to it:

PRINT#

Prints data entered as string or numeric expressions to a sequential
file. Expressions can be separated by commas or semicolons:

» Commas prints the expression in separate zones.

» Semicolons prints expressions adjacently.

There are two ways to divide the file into records:

» EachPRINT# statement creates a new record (see line 20-40
in the example below).

» Commas inside a string divides the string into records (see line
50 in the example below).

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 77

Chapter 8 Output from UBI Fingerprint

8.3

Output and
Append to
Sequential Files,
cont'd.

PRINT#, cont'd.

Example:

10 OPEN "QFILE" FOR OUTPUT AS #1

0 PRINT #1, "Record A", "a", "b", "c"

30 PRINT #1, "Record B, 1, 2, 3

40 PRINT #1, "Record C", "x"; "y"; "Z"

50 PRINT #1, "Record D,Record E,Record F"

N

PRINTONE#

Prints characters entered as decimal ASCII values according to the
selected character set to the selected file or device. This statement
is e.g. useful when the host cannot produce certain characters. Apart
from using ASCII values instead of string or numeric expressions,
thePRINTONE#vorks in the same way as PRINT# statement.

Example (prints two records "Hello” and “Goodbye” to "file1"):
10 OPEN "filel" FOR OUTPUT AS 55

20 PRINTONE#55,72;101;108;108;111

30 PRINTONE#55,71;111;111;100;98;121;101

CLOSE
After having written all the data you need to the GleQ SHt using
the same reference number as when it@RENed

Example:

10 OPEN "filel" FOR OUTPUT AS 55

20 PRINTONE#55,72;101;108;108;111

30 PRINTONE#55,71;111;111;100;98;121;101
40 CLOSE55

LOC (Location)
TheLOCfunction returns the number of 128-byte blocks, that have
been written since the file w&PENed

This example closes the file "ADDRESSES" when record No. 100
has been read from the file:
10 OPEN "ADDRESSES"FOR OUTPUT AS #1

200 IFLOC(1)=100 THEN CLOSE #1

LOF (Length-of-File)
TheLOFfunction returns the length in bytes of@RENedile.

The example illustrates how the length of the file "Pricelist” is
returned:

10 OPEN "PRICELIST" FOR OUTPUT AS #5

20 PRINT LOF(5)

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 78

Chapter 8 Output from UBI Fingerprint

8.4

Output to
Random Files

The following instructions are used in connection with output to

random files:

OPEN Creates and/or opens a file RANDOM
access and optionally specifies the record
length in bytes.

FIELD Creates a random buffer, divides it into
fields and assigns a variable to each field.

LSET/RSET Places data left- or right-justified into the
buffer.

PUT Writes a record from the buffer to the file.

CLOSE Closes ait©OPENedile.

LOC Returns the number of the last record

written by the use of RUTstatement in
the specified file.

LOF Returns the length in bytes of the speci-
fied file.

To write data to a random file, proceed as follows:

OPEN

Start byOPENIng a file for random input/output. Since random
access s selected by default, the mode of access can be omitted from
the statement, e.g.:

10 OPEN'"ZFILE"AS #1

Optionally, the length of each record in the file can be specified in
number of bytes (default 128 bytes):
10 OPEN "ZFILE" AS #1 LEN=14

FIELD

Next action to take is to create a buffer by meansfE&aD
statement. The buffer is given a reference number and divided into
a number of fields with individual length in regard of number of
characters. To each field, a string variable is assigned.

The buffer specifies the format of each record in the file. The sum
of the length of the different fields in a record must not exceed the
record length specified in tli@PENstatement.

Inthe example below, 4 bytes are allocated to field 1, 4 bytes to field
2 and 6 bytestofield 3. The fields are assigned to the string variables
Al$, A2$ and A3$ respectively.

20 FIELD#1,4 ASF1$, 4 AS F2$, 6 AS F3$

Graphically illustrated, the record produced in the line above will
look like this:

Record 1
[TTTTTTTTTTT]
1234(1234(12345°6
Field1 Field2 Field3

The file can consist of many records, all with the same format. (To
produces files with different record lengths, the file must be
OPENedmore than once and with different reference numbers).

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 79

Chapter 8 Output from UBI Fingerprint

8.4 Outputto
Random Files,
cont'd.

[J STR$ Function
Also see:
« Chapter 9.2

Now itis time to write some data to the file. Usually the data comes
from e.qg. the host or from the printer's keyboard. In this example,
we will type the data directly on the host and assign the data to string
variables:

30 QDATA1$="ABC"

40 QDATA2$="DEF"

50 QDATA3$="12345678"

Note that only string variables can be used. Possible numeric
expressions must therefore be converted to strings by means of
STR$functions.

LSET/RSET

There are two instructions for placing data into a random file buffer:
* LSET places the data left-justified.

* RSET places the data right-justified.

In other words, ifthe input data consist of less bytes that the field into
which itis placed, it will either be placed to the IBET) or to the

right (RSET.

If the length of the input data exceeds the size of the field, the data
will be truncated from the end in casd.8ET, and from the start
in case oRSET

60 LSET F1$=QDATA1$
70 RSET F2$=QDATA2$
80 LSET F3$=QDATA3%

Using the graphic illustration from previous page, the result is
meant to be like this:

Record 1

A[B[C] | DIE[F[1[2[3[4]5]6
1234[(1234(12345°6
Field1 Field2 Field3

Note that the first field is left-justified, the second field is right-
justified, and the third field is left-justified and truncated at the end
(digits 7 and 8 are omitted since the field is only six bytes long; if
the field had been right-justified, digits 1 and 2 had been omitted
instead).

PUT

Next step is to transfer the record to the file. For this purpose we use
thePUTstatemen®UTis always followed by the number assigned

to the file when it wa®©PENedand the number of the record in
which you want to place the data (1 or larger).

In our example, the file ZFILE w&PENeds #1 and we want to
place the data in the first record. Note that you can place data in
whatever record you like. The order is of no consequence.

90 PUT #1,1

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 80

Chapter 8 Output from UBI Fingerprint

84 Output to Ifyouwant, you can continue and place datainto other records using
Random Fil additional sets oESET, RSETandPUT statements. Below is a
anaom Fiies, graphic example of a three-record file:
contd. Recor

d1 Record 2 Record 3
[AIB[C] [[DIE[F[1[2]3[4[5[6]X[¥[Z] [[Q[RIS[8[4[5[3[1[[RIS[T[T[[U[VW[9[8[7[6[5[4]|
[t1234[1234[123456[1234[1234[123456[1234[1234[123456|
Field1 Field2 Field3 Field1 Field2 Field3 Field1 Field2 Field3

CLOSE
When you are finished, close the file:

100 CLOSE #1

Nothing will actually happen before you execute the program using
aRUNstatement. Then the data will be placed into the fields and
records as specified by the program, e.g.:

10 OPEN "ZFILE"AS #1 LEN=14

20 FIELD#1,4 ASF1$, 4 AS F2$, 6 AS F3$

30 QDATA1$="ABC"

40 QDATA2$="DEF"

50 QDATA3$="12345678"

60 LSETF1$=QDATA1$

70 RSET F2$=QDATA2$

80 LSET F3$=QDATA3$

90 PUT#1,1

100 CLOSE#1

RUN

LOC (Locate)
The LOCfunction returns the number of the last record read or

written by the use oBETor PUT statements respectively in an
OPENedile.

This example closes the file "ADDRESSES" when record No. 100
has been read from the file:
10 OPEN "ADDRESSES"AS #1

200 IFLOC(1)=100 THEN CLOSE #1

LOF (Length-of-File)
TheLOFfunction returns the length in bytes of@RENedile.

The example illustrates how the length of the file "Pricelist” is
returned:

10 OPEN'"PRICELIST" AS #5

20 PRINT LOF(5)

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 81

Chapter 8 Output from UBI Fingerprint

8.5 Output to Outputfrom a UBI Fingerprint program can be directed to any serial
C C communication chann@PENedor sequentiaDUTPUTollow-
ommunication ing the same principles as for output to files (see chapter 8.3).
Channels Note that in this case, the parallel communication channel

"centronics:" cannot be used (one-way communication only).

The communication channels are specified by name as follows:
o "uartl:”
o "uart2:"

The following instructions are used in connection with output to a
communication channel:

OPEN Opens a serial communication channel
for sequential output.

PRINT# Prints data entered as numeric or string
expressions to the selected channel.

PRINTONE# Prints data entered as ASCII values to the
selected channel.

CLOSE Closes at©OPENedchannel.

LOC Returns the remaining number of free

bytes in the transmitter buffer of the se-
lected communication channel.

LOF Returns the remaining numbers of char-
acters to be transmitted from the transmit-
ter buffer is returned.

COPY Copies afile to acommunication channel.

Example 1 (prints the records “Record 1” and “Record 2” to the
serial communication channel "uart2:"):

10 OPEN "uart2:" for OUTPUT AS #1

20 PRINT#1, "Record 1"

30 PRINTONE #1, 82;101;99;111;114;100;32;50

40 CLOSE#1

Example (prints the file "datafile” in a DOS-formatted memory
card to the serial communication channel "uart2:"):
COPY "cardl:datafile","uart2:"

8.6 Output to The only device, other than the serial communication channels, that
Displ can beéOPENedto receive output from a UBI Fingerprint program,
ISpiay is the printer's LCD display ("console:"). This is explained in
chapter 15.2 together with other methods for controlling the dis-
play.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 82

9. Data Handling

9.1 Preprocessing
Input Data

[COMSET statement
Also see:
« Chapter 7.8

[J ON KEY...GOSUB statement
Also see:
« Chapter 15.1

[J Character Sets

Also see:

+ UBI Fingerprint 7.xx Reference Manual
for complete single-byte character set
tables.

Chapter 9

All input data to the printer come in binary form via the various
communication channels. Text files are transmitted in ASCII
format, which upon reception will be preprocessed by the printer's
software according to two instructions as to provide full compatibil-
ity between the printer and the host:

MAP Remaps the selected character set.

NASC Selects a single-byte character set

NASCD Selects a double-byte character set

A character received by the printer on a communication channel
will first be processed in regard of possilaPstatements. Then

the character will be checked for aDMSE®r ON KEY....
GOSUBRBonditions. When a character is to be printed, it will be
processed into a bitmap pattern that makes up a certain character
according to the character set selected by meandNéfS&Lor
NASCDBtatement.

MAP

TheMAPstatement is used to modify a character set or to filter out
undesired characters on a specified communication channel by
mapping them as Null (ASCII 0 dec).

If no character set meets your requirements completelN&8€E

andNASCIbelow), select the set that comes closest and modify it
usingMAPstatements. Do not map any characters to ASCII values
occupied by characters used in UBI Fingerprint instructions, e.g.
keywords, operators, %, $, #, and certain punctuation marks.
Mapped characters will be reset to normal at power-up or reboot.

Example:

You may want to use the German character set (49) and 7 bits
communication protocol. However, you need to print £ characters,
but have no need for the & character. Then remap the £ character
(ASCII 187 dec.) to the value of the & character (ASCII 38 dec.) .
Type a series of & characters on the keyboard of the host and finish
with a carriage return:

10 NASC 49

20 MAP 38,187

30 FONT "Swiss 721 BT"

40 PRPOS 100,100

50 INPUT "Enter character";A$

60 PRTXT A$

70 PRINTFEED

RUN

Enter character? (see notel)

Note! When using 7 bit communication, the printer cannot echo
back the correct character to the hostifits ASCIl value exceeds 127,
hence ;" characters will appear on the screen. Nevertheless, the
desired ‘£’ characters will be printed on the label.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 83

Chapter 9 Data Handling

9.1

Preprocessing
Input Data, contd.

NASC

TheNASGtatement is used to select a single-byte character set that
decides how the various characters will be printed. This instruction
makes it possible to adapt the printer to various national standards.
By default, characters will be printed according to the Roman 8
character set.

Suppose you order the printer to print the character ASCII 124 dec.
(We will not concern ourselves with how your computer and its
keyboard are mapped. Refer to their respective manuals.) If you
check the character set tables at the end of the UBI Fingerprint 7.xx
Reference Manual, you will see that ASCII 124 will generate the
character “|” according to the Roman 8 character set, “0” according
to the French character set and i according to the Spanish set etc.
The same applies to a number of special national characters,
whereas digits 0—9 and characters A-Z, a—z plus most punctuation
marks are the same in all sets. Select the set that best matches your
data equipment and printout requirements.

If none of the sets matches your requirements exactly, select the one
that comes closest. Then, you can make final corrections by means
of MAPstatements, see above.

A NASGstatement will have the following consequences:

» Text printing:
Text on labels etc. will be printed according to the selected
character set. However, instructions concerning the printable
label image, that already has been processed befd¥ASE
statement is executed, will not be affected. This implies that
labels may be multilingual.

» LCD display:
New messages in the display will be affected by a preceding
NASGtatement. However, a message that is already displayed
will not be updated automatically. The display is able to show
most printable latin characters.

* Communication:
Data transmitted from the printer via any of the communication
channels will not be affected, as the data is defined by ASCII
values, not as alphanumeric characters. The active character set
of thereceivingunit will decide the graphic presentation of the
input data, e.g. on the screen of the host.

» Bar code printing:
The pattern of the bars reflects the ASCII values of the input data
and is not affected by MASCstatement. The bar code inter-
pretation (i.e. the human readable characters below the bar
pattern) is affected byNMASGtatement. However, the interpre-
tation of bar codes, that have been processed and are stored inthe
print buffer, will not be affected.

This example selects the Italian character set:
NASC 39

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 84

Chapter 9 Data Handling

9.1

Preprocessing
Input Data, contd.

NASCD

TheNASCDBtatement works similar to tNASGstatement, but is
used for double-byte character sets, i.e. for such fonts that require
2 bytes to specify a character according to the Unicode standard.
This is for example the case with major Asian languages, such as
Chinese, Korean and Japanese.

When a double-byte character set has been selected, the firmware
will usually treat all characters from ASCII 161 dec. to ASCII 254
dec (ASCII Al — FE hex) as the first part of a two-byte character.
Next character byte received will specify the second part. However,
the selected Unicode double-byte character set may specify some
other ASCII value as the breaking point between single and double
byte character sets.

There are various ways to produce double-byte characters from the
keyboard of the computer. By selecting the proper character set
using aNASCDstatement, the typed-in ASCII values will be
translated to the corresponding Unicode values, so the desired
glyph will be printed.

Double-byte fonts and character set tables are available from UBI
on special request, usually in the form of font cards.

Example:

The text field in line 50 contains both single- and double-byte fonts.
The double-byte font and its character set are stored in a Font
Install Card. The program yields a printed text line that starts with
the Latin character A (ASCII 65 dec.) followed by the Chinese font
that corresponds to the address 161+162 dec. in the character set
“BIG5.NCD”".

10 NASC 46

20 FONT "Swiss 721 BT", 24, 10

30 NASCD "rom:BIG5.NCD"

40 FONTD "Chinese"

50 PRTXT CHR$(65);CHR$(161);,CHR$(162)

60 PRINTFEED

RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 85

Chapter 9 Data Handling

9.2

Input Data
Conversion

There are a number of instruction for converting data in numeric or
string expressions. You will find them used in many examples in
this volume. The instructions will only be described in short terms.

For full information, please refer to the UBI Fingerprint Reference

Manual.

ABS
The ABSfunction returns the absolute value of a numeric expres-
sion. Absolute value means that the value is either positive or zero.

Example:
PRINT ABS (10-15) yields:
5

ASC
The ASCfunction returns the decimal ASCII value of the first

character in a string expression.

Example:
PRINT ASC("HELLO") yields:
72

CHRS

The CHR%unction returns the readable character from a decimal
ASCII value. This function is useful when you cannot produce a
certain character from the keyboard of the host.

Example:
PRINT CHR$(72) yields:
H

INSTR
The INSTR function searches a string expression for a certain
character, or sequence of characters, and returns the position.

Example:
PRINT INSTR ("UBI","BI") yields:
2

LEFT$

TheLEFT$function returns a certain number of characters fromthe
left side of a string expression, i.e. from the start. The complemen-
tary instruction iRIGHT$S

Example:
PRINT LEFT$("UBI PRINTER",3) yields:
uBl

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 86

Chapter 9 Data Handling

9.2 Input Data
Conversion,
cont'd.

Note:

LEN
TheLENfunction returns the number of characters including space
characters in a string expression.

Example:
PRINT LEN ("UBI PRINTER") yields:
11

MID$
TheMIDS$ function returns a part of a string expression. You can

specify start position and, optionally, the number of characters to be
returned.

Example:
PRINT MID$ ("UBI PRINTER"5,2) yields:
PR

RIGHT$

TheRIGHT$function returns a certain number of characters from
the right side of a string expression, i.e. from the end. The comple-
mentary instruction iEEFT$.

Example:
PRINT RIGHT$("UBI PRINTER",7) yields:
PRINTER

SGN
TheSGNunction returns the sign (1 = positive, -1 = negative or 0
= zero) of a numeric expression.

Example:
PRINT SGN(5-10) yields:
-1

SPACE$
TheSPACE3%unction returns a specified number of space charac-
tersand s e.g. useful for creating tables with monospace characters.

Example:
10 FONT "Swiss 721 BT"

When entering the price in the ex20
ample forSPACE$make sure to 30
use a period character (.) to indi- 40
cate the decimal point. 50
60
70
80
90
100
110

X%=100 : Y%=300

FOR Q%=1TO5

INPUT "Commodity: ", A$
INPUT "Price $:", B$
C$=SPACES$(15-LEN(AS$))
PRPOS X%,Y%

PRTXT A$+C$+"$ "+B$
Y%=Y%-40

NEXT

PRINTFEED

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 87

Chapter 9 Data Handling

9.2

Input Data
Conversion,
cont'd.

STR$
The STR$function returns the string representation of a numeric

expression. The complementary instructioviAd.

Example:

10 A%=123

20 A$=STR$(A%)

30 PRINT A%+A%

40 PRINT A$+A$

RUN yields:
246

123123

STRING$
The STRINGS$function returns a specified number of a single

character specified either by its ASCII value or by being the first
character in a string expression.

Example:

10 A$="THE END*"

20 FIRST$=STRING$(4,42)

30 LAST$=STRING$(4,A$)

40 PRINT FIRST$+A$+LASTS

RUN yields:
Hooes THE END*

VAL
The VAL function returns the numeric representation of a string

expression. The complementary instructioB TR$

VAL s for example used in connection with random files, which
only accept strings (see chapters 7.5 and 8.4). Thus numeric
expressions must be converted to string format &iiftbefore

they areéPUTin a random file and be converted back to numeric
values usinyyAL after youGETthem back from the file.

Another application is when you want to calculate using data in a
string expression, e.g. when reading the printer's clock (also see
chapter 9.3).

Example of how to use the printer as an alarm clock:
10 INPUT "Set Alarm"; A%

20 B%=VAL(TIME$)

30 IFB%>=A% THEN GOTO 40 ELSE GOTO 20

40 SOUND 880,100: END

RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 88

Chapter 9 Data Handling

9.3 Date and Time

[J Setting Time and Date

See:
« Chapter 15.5 980101.

The printer's CPU board is provided with a battery backed-up real-
time clock (RTC).

The built-in calendar runs from 1980 through 2048 and corrects
illegal values automatically, e.g. 971232 will be corrected to

The standard formats for date and time are:

Date YYMMDDvhere...
YY are the two last digits of the year
MMare two digits representing the month (01-12)
DDare two digits representing the day (01-28|29|30|31)
Time HHMMS®&here...
HHare two digits representing the hour (00-23)
MMare two digits representing the minute (00-59)
SSare two digits representing the second (00-59)

In addition to the standard formats, other formats for date and time
can be specified by the following instructions:

FORMAT DATE$

FORMAT TIME$

NAME DATE$
NAME WEEKDAY$

Specifies the format of date strings re-
turned byDATE$and DATEADDSN-
structions.

Specifies the format of date strings re-
turned by TIME$ and TIMEADDSIn-
structions.

Specifies the names of the months.
Specifies the names of the weekdays.

The following instructions are used to read the clock/calendar:

<svar> = DATE$

<svar> = DATE$("F")

<svar> = TIME$

<svar> = TIMES$("F")

DATEADD$

TIMEADD$

DATEDIFF

TIMEDIFF

WEEKDAY

Returns the current date in standard for-
mat to a string variable.

Returns the current date in the format
specified byFORMAT DATHES® a string
variable.

Returns the current time in standard for-
mat to a string variable.

Returns the current time in the format
specified byFORMAT TIME%o a string
variable.

Adds or subtracts a number of days to/
from the current date or a specified date
and returns it in standard format, or the
format specified bFORMAT DATES$
Adds or subtracts a number of seconds to/
from the current time or a specified mo-
ment of time and returns it in standard
format, or the format specified by
FORMAT TIMES$

Calculates the difference in days between
two specified dates.

Calculates the difference in seconds be-
tween two specified moments of time.
Returnsthe weekday of a specified date as
a numeric constant (1-7).

UBI Fingerprint 7.11 — Programmer's Guide Ed. 1

89

Chapter 9 Data Handling

9.3

Date and Time,
cont'd.

WEEKDAY$ Returns the name of the weekday of a
specified date in plain text according to
the weekday names specified MxME
WEEKDAY#$r —if such aname is missing
— the full name in English.

WEEKNUMBER Returns the week number of a specified
date.
TICKS Returns the time passed since last startup

in Y100 seconds.

Note that in most instructions, you can specify the current date or
time by means dDATESor TIMES respectively, e.g.:

WEEKDAY$ (DATE$)

TIMEDIFF (TIMES, "120000")

This example shows how the date and time formats are set and a
table of the names of months is created. Finally, a number of date
and time parameters are read and printed to the standard OUT
channel after being provided with some explanatory text:
10 FORMAT DATES$ "MMM/DD/YYYY"
20 FORMAT TIME$ "hh.mm pp"
30 NAME DATES$ 1, "Jan":NAME DATES$ 2, "Feb"
40 NAME DATES$ 3, "Mar:NAME DATES$ 4, "Apr"
50 NAME DATES$ 5, "May":NAME DATE$ 6, "Jun"
60 NAME DATE$ 7, "Jul:NAME DATE$ 8, "Aug"
70 NAME DATE$ 9, "Sep":NAME DATES$ 10, "Oct"
80 NAME DATES$ 11, "Nov":NAME DATES$ 12, "Dec"
90 A%=WEEKDAY(DATES$)
100 PRINT WEEKDAYS$(DATES$)+" "+DATES("F")+" "

+TIMES$('F")
110 PRINT "Date:",DATES$('F")
120 PRINT "Time:", TIMES("F")
130 PRINT "Weekday:", WEEKDAY$(DATE$)
140 PRINT "Week No.:" WEEKNUMBER (DATES$)
150 PRINT "Day No.:", DATEDIFF ('950101",DATE$)
160 PRINT "Run time:", TICKS\6000;" minutes"
170 IF A%<6 THEN PRINT "This is ";WEEKDAY$(DATES$);

". Go to work!"
180 IF A%>5 THEN PRINT "This is ";WEEKDAY$(DATES$);

". Stay home!"
RUN

yields e.g.:

Friday Jun/09/1995 08.00 am
Date: Jun/09/1995
Time: 08.00 am
Weekday: Friday
Week No.: 23
Day No.: 159
Run time: 1 minutes
This is Friday. Go to work!

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 90

Chapter 9 Data Handling

93 Date and Time This example shows how thECKS function is used to delay the
’ execution for a specified period of time:

contd. 10

20
30
40
1000
1010
1020
RUN

INPUT "Enter delay in sec's: ", A%

B%=TICKS+(A%*100)

GOSUB 1000

END

SOUND 440,50 (Start signal)
IF B%<=TICKS THEN SOUND 880,100 ELSE GOTO 1010
RETURN

94 Random Number The UBI Fingerprint software provides two instructions for gener-

Generation

ating random numbers, e.g. for use in test programs.

RANDOM
TheRANDOIMInction generates a random integer within a speci-

fied interval.

This example tests a random dot on the printhead of a 12 dots/mm
EasyCoder 501 XP printer:

10 MIN%=HEAD(-7)*85\100: MAX%=HEAD(-7)*115\100
20 DOTNO%=RANDOM(0,1279)

30 IF HEAD(DOTNO%)<MIN% OR HEAD(DOTNO%)>MAX% THEN
40 BEEP

50 PRINT "ERROR IN DOT "; DOTNO%

60 ELSE

70 BEEP

80 PRINT "HEADTEST: OK!"

90 END IF

RUN

RANDOMIZE

To obtain a higher degree of randomization, the random number
generator can be reseeded usindRABIDOMIZEtatement. You

can either include an integer with which the generator will be
reseeded, or a prompt will appear asking you to do so.

This example prints a random pattern of dots after the random
number generator has been reseeded:

10 RANDOMIZE

20 FOR Q%=1 TO 100

30 X%=RANDOM(50,400)

40 Y%=RANDOM(50,400)

50 PRPOS X%,Y%

60 PRLINE 5,5

70 NEXT

80 PRINTFEED

RUN

yields:

Random Number Seed (0 to 99999999) ? (prompt)

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 91

10. Label Design

10.1 Creating a
Layout

Chapter 10

Field Types

A label layout is made up of a number of fields. There are five

different types of fields:

* Text Field Atextfield consists of a single line of text.

* Bar Code Field A bar code field consists of a single bar
code, with or without a bar code interpre-
tation in human readable characters.

* Image Field Animage field is a picture, drawing, logo-
type or other type of illustration.

* Box Field A box field is a square or rectangular
paper-coloured area surrounded by a black
border line. If the border is sufficiently
thick, the whole area may appear black.

* Line Field A line field is a black line that goes either

along or across the paper web. A short but
thick line can look like a black box.

There are no restrictions, other than the size of the printer's memory,
regarding the number of fields on a single label.

Bar Code Field
(w. interpretation)

uBI

+_/— Box Field

My FIRST label!

Text Field

Line Field

Image Field

UBI Fingerprint 7.11 — Programmer's Guide Ed. 1

92

Chapter 10 Label Design

10.1 Creating a

Layout, contd.

[0 PRINTFEED Statement
Also see:
* Chapter 11.3

[0 Setup Mode

Also see:

« Chapter 15.6

« Installation & Operation manual

Origin

Th% positioning of all printable objects on the label, i.e. text fields,
bar code fields, images, boxes, and lines, uses a common system.
The starting point is called “origin” and is the point on the paper that
corresponds to the innermost active dot on the printhead at the
moment when thBRINTFEEDstatement is executed.

The location of the origo is affected by the following factors:

» Position across the paper web (X-axis):
The position of the origo is determined by the X-Start value in
the Setup Mode .

» Position along the paper web (Y-axis):
The position of the origo is determined by the Feed adjustment
in the Setup Mode and afORMFEED<nexpstatements
executed before the curréRINTFEEDstatement or after the
preceding®RINTFEEDstatement.

Coordinates

Starting from the origin, there is a coordinate system where the X-
axisruns across the paper web fromleftto right (as seen when facing
the printer) and the Y-axis runs along the paper web from the
printhead and towards the rear end of the paper.

Units of Measure

The unit of measure is always “dots”, i.e. all measures depend on
the density of the printhead. For example, in a printer witha 12 dots/
mm printhead, a dot &2 mm = 0.0833 mm = 0.00328" or 3.28
mils. This implies that a certain label, originally designed for 12
dots/mm, will be printed larger in a 8 dots/mm printer. However,
fonts are specified in points (not dots) and will thus be the same size
regardless of printhead density.

A dot has the same size along both the X-axis and the Y-axis.

Insertion Point

The insertion point of any printable object is specified within this
coordinate system by means oPRPOS<x-pos>,<y-pos>
statement. For example, the staten®POS 100,200 means

that the object will be inserted at a position 100 dots to the right of
the origin and 200 dots further back along the paper.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 93

Chapter 10 Label Design

10.1 Creating a Alignment y . _
L t , Once the insertion point is specified, you must also decided which
ayout, contd. part of the object should match the insertion point. For example, a

text field forms a rectangle. There are 8 anchor points along the
borders and one in the centre. The anchor points are numbered 1—
9 and specified by means ofAld GN statement. By specifying e.g.
ALIGN1 , you will place the lower left corner of the text field at the
insertion point specified by tHRRPOStatement.

Theillustration below shows the anchor points for the various types
of fields. Refer to the UBI Fingerprint 7.xx Reference Manual,
ALIGN statement for detailed information on the anchor points
such bar codes, where the interpretation is an integrated part of the
bar code pattern, e.g. EAN and UPC codes.

__ base-
line
1,40r7 2,50r8 3.6o0r9
T T
1,40r7 2,50r8 3,6o0r9

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 94

Chapter 10 Label Design

10.1 Creating a
Layout, contd.

Y-Coordinate

Origin

Dot-line
on printhead

x
Q
-‘ we® ’

m}
___ 5
§V~~ _:DIRI
. " Insertion point =

Anchor point
'
=]

B OO000ORO000

Directions
UBI Fingerprint allows printing in four different directions. Using

a DIR statement, you can rotate the printable object clockwise
around the anchor point/insertion point with & @@rement (0,
90, 180, or 270), as illustrated below:

X-sta’rt

Dot 0

X-Coordinate

PAPER FEED
DIRECTION

UBI Fingerprint 7.11 — Programmer's Guide Ed. 1

95

Chapter 10 Label Design

10.1 Creating a
Layout, contd.

Layout Files
In addition to the method described above, there is an alternative

method using files for specifying the various fields and their input
data separately (see chapter 10.7). However, the various parameters
of the layout file are based on the same principles as described in
chapters 10.1 - 10.6.

Checking Current Position
After having positioned and specified an object, you can find outthe

current position of the insertion point by means G({RSTAT

function. This implies that after having e.g. entered a line of text,

you can find out how long it will be and where any new object will
be placed unless a new position is specified.

* Inprintdirection1or FRSTAT(1) returnsthe absolute value
of the insertion point along the X-axis, wherB&STAT (2)
returns the Y-value of the last execuRIPOStatement.

e Inprintdirection2or KRSTAT(2) returnsthe absolute value
of the insertion point along the Y-axis, wherB&STAT (1)
returns the X-value of the last execuRRIPOStatement.

Example:

An unknown number of logotypes will be printed with 10 dots
spacing across the paper web. The size of the logotype is not known.
To avoid an “field out of label” error, a limitation in regard of
paper width is included (line 80, change if necessary).

10 PRPOS 0,50

20 PRIMAGE"UBI.1"

30 X%=PRSTAT(1)

40 FORA%=1TO 10

50 Z%=PRSTAT(1)

60 PRPOS Z%+10,50

70 PRIMAGE "UBI.1"

80 IFZ%>550 THEN GOTO 100

90 NEXT

100 PRINTFEED

110 END

RUN

Note:
The PRSTATunction can also be used for checking the printer's
status in regard of a number of conditions, see chapter 16.3.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 96

Chapter 10 Label Design

10.2 Text Field

[J Fonts
Also see:
« Chapter 12

NORIMAGE

A text field consists of one or several alphanumeric characters on
the same line (max 300 characters). UBI Fingerprint cannot wrap
text to a new line, but each line must be specified as a separate text
field.

In addition to the standard positioning statemBPRBOSALIGN
andDIR, a text field can contain the following instructions:

FONT (FT) and FONTD

Specifies the single- or double-byte font to be printed respectively.
Default choice is the single-byte font Swiss 721 BT in 12 points size
and with no slant. Once a font has been specified, it will be used in
all text fields until a newrONTor FONTDstatement is executed.

MAG

Fonts can be magnified 1—4times independently in regard of height
and width. This facility is mainly retained for compatibility with
earlier UBI Fingerprint versions. The printout qulaity will be better

if you specify alarger font size rather than magnifying asmaller one.

NORIMAGE (NI) / INVIMAGE (II)

Normally, text is printed in black on a paper-coloured background
(NORIMAGE UsingINVIMAGE the printing can be inversed so
the paper gives the colour of the characters, whereas the back-
ground will be black. The size of the background is decided by the
character cell. ANORIMAGEstatement is only needed when
changing back frorfiNVIMAGE printing.

PRTXT (PT)

Textcan be entered in the form of numeric expressions and/or string
expressions. Two or more expression can be combined using
semicolons (;) or, in case of string expressions, by plus signs (+).
String constants must be enclosed by double quotation marks ("...").
Variables are useful for printing e.g. time, date or various counters,
and when the same information is to appear in several places, e.g.
both as plain text and as bar code input data.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 97

Chapter 10 Label Design

10.2 Text Field, contd. Summary

Toprintatextfield, the following information and instructions must
be given (default values will substitute missing parameters):

Purpose Instruction Default Remarks
XIY Position PRPOS (PP) 0/0 Number of dots
Alignment ALIGN (AN) 1 Select ALIGN 1-9
Direction DIR 1 SelectDIR1-4
Typeface FONT (FT) Swiss 721 BT,12,0
FONTD n.a.
Magnification MAG 11 Height 1 — 4, Width 1 -4
Style INVIMAGE (1) no White on black print
NORIMAGE (NI) yes Black on white print
Text PRTXT (PT) n.a. Field input data
Print a label PRINTFEED (PF) n.a. Resets parameters to default
Example:
10 PRPOS 100,200
20 ALIGN 7
30 DIR 2
40 FONT "Swiss 721 Bold BT,10,15"
50 MAG 2,2

60 INVIMAGE

70 PRTXT "HELLO"
80 PRINTFEED
RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 98

Chapter 10 Label Design

10.3 Bar Code Field

[0 Bar Codes
Also see:
+ Chapter 13

O Fonts
Also see:
+ Chapter 12

As standard, UBI Fingerprint 7.11 supports 40 of the most common
bar code symbologies including two-dimensional bar codes and dot
codes like PDF417, USD5, MaxiCode, and LEB. Each bar code
(optionally including its human readable interpretation) makes up
a bar code field.

In addition to the standard positioning statemBPRBOSALIGN
andDIR, a bar code field can contain the following instructions:

BARSET
This statement species the type of bar code and how it will be printed
and can, if so desired, replace the following statements:

BARHEIGHT (BH) Height of the bars in the code
BARRATIO (BR) Ratio between wide and narrow bars
BARTYPE (BT) Bar code type

BARMAG (BM) Enlargement

TheBARSETstatement contains optional parameters for specify-
ing complex 2-dimensional bar or dot codes, e.g. PDF417 (see UBI
Fingerprint 7.xx Reference Manual).

For common one-dimensional bar codes the following parameters

should be included in the statement:

* Bar code type Name must be given according to list in
chapter 13.1 and be enclosed by double
guotation marks ("...").

Default: "INT20F5"

* Ratio (wide bars) Default: 3

* Ratio (narrow bars) Default: 1

» Enlargement Affects the bar pattern but not the inter-
pretation, unless the bar font is an inte-
grated part of the code, e.g. EAN/UPC.
Default: 2

* Height Height of the bars in dots.

Default: 100.

BARFONT...ON

Specifies the single-byte font to be used for the bar code interpre-
tation (human readables). Note that in some bar codes (e.g. EAN/
UPC) the interpretation is an integrated part of the code.

The bar font can be specified in regard of:

* Font Default: Swiss 721 BT

* Size in points Default: 12 points.

* Slant in degrees Default: 0.

* Vertical offset Specifies the distance in dots between the

bottom of the bar pattern and the top of the
interpretation characters. Default: 6.

» Height Magnification Default: 1

» Width Magnification Default: 1

* ON Enables the printing of the interpretation.
Default: Disabled

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 99

Chapter 10 Label Design

3.

Bar Code Field,

cont'd.

BARFONT OFF
To disable bar code interpretation printing, B8&RFONT OFF

PRBAR (PB)

Input data to be used to generate the bar code can be entered in the
form of anumeric or expressions. String constants must be enclosed
by double quotation marks ("..."). Variables are useful for printing
e.g. time, date or various counters, and when the same information
is to appear in several places, e.g. both as plain text and as bar code
input data.

Summary

To printa bar code field, the following information and instructions
be must given (in most cases default values will substitute missing
information):

Purpose Instruction Default Remarks

XIY Position PRPOS (PP) 0/0 Number of dots

Alignment ALIGN (AN) 1 Select ALIGN 1-9
Direction DIR 1 SelectDIR1-4

Bar Code Select BARSET see above

Hum. Readables BARFONT..ON see above Can be omitted

Input Data PRBAR (PB) n.a. Input data to bar code field
Print a label PRINTFEED (PF) n.a. Resets parameters to default
Example:

10 PRPOS 50,500

20 ALIGN 7

30 DIR 4

40 BARSET "CODE39",2,1,3,120

50 BARFONT "Swiss 721 Bold BT,10,0",5,1,1 ON
60 PRBAR "UBI"

70 PRINTFEED

RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 100

Chapter 10 Label Design

104 Image Field

[0 Image Downloading
Also see:
* Chapter 14

An image field is a field containing a picture or logotype in .PCX
format, which has been downloaded and installed in the printer.

In addition to the standard positioning statemBRBOSALIGN
andDIR, an image field can contain the following instructions:

MAG
Images can be magnified 1-4 times independently in regard of
height and width.

NORIMAGE (NI) / INVIMAGE (1)

Normally, images are printed as created, i.e. in black without any
backgroundJORIMAGE UsingINVIMAGEthe black and non-
printed background can exchange colours. The size of the back-
ground is decided by the size of the imagd@RIMAGEtatement

is only needed when changing back fiddiYIMAGE printing.

PRIMAGE (PM)

Specifies the image by name in the form of a string expression. A

string constant must be enclosed by double quotation marks ("...").

A string variable may be useful when the same image is to appear
in several places. The extension indicates the suitable directions:

Extension .1 matché3R 1 andDIR 3

Extension .2 matché3IlR 2 andDIR 4

Summary
To printan image field, the following instructions must be given (in
most cases default values will substitute missing information):

Purpose Instruction Default Remarks
XIY Position PRPOS (PP) 0/0 Number of dots
Alignment ALIGN (AN) 1 Select ALIGN 1 -9

Direction DIR 1 SelectDIR 1 -4

Magnification MAG 11 Height 1 — 4, Width 1 -4

Style INVIMAGE (II) no White-on-black
NORIMAGE (NI) yes Black-on-white

Image PRIMAGE (PM) na. .1 or .2 depending on dir.

Print a label PRINTFEED (PF) n.a. Resets parameters to default

Example:

10 PRPOS 50,50

20 ALIGN 9

30DIR3

40 MAG 2,2

50 INVIMAGE

60 PRIMAGE "UBI.1"

70 PRINTFEED

RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 101

Chapter 10 Label Design

105 Box Field A box is a hollow square or rectangle that can be rotated with an
increment of 90 according to the print direction. If the line
thickness is sufficiently large, the box will appear to be filled
(another method is to print an extremely thick short line).

In addition to the standard positioning statemBPRBOSALIGN
andDIR, a box field can only contain the following instruction:

PRBOX (PX)
Specifies the size of the box in regard of height, width and line
weight (thickness) in dots.

summary o : : :
To print a box, the following information and instructions must be
given (in some cases default values will substitute missing informa-

tion):

Purpose Instruction Default Remarks

XIY Position PRPOS (PP) 0/0 Number of dots

Alignment ALIGN (AN) 1 Select ALIGN 1 -9

Direction DIR 1 SelectDIR1-4

Box spec:s PRBOX (PX) n.a. Height, width and line weight
in dots

Print a label PRINTFEED (PF) n.a. Resets parameters to default

Example:

10 PRPOS 250,250

20 ALIGN 1

30DIR3

40 PRBOX 200,200,10

50 PRINTFEED

RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 102

Chapter 10 Label Design

10.6 Line Field A line can be printed in right angles along or across the paper
according to the print direction.

In addition to the standard positioning statemBRBOSALIGN
andDIR, a line field can only contain the following instruction:

PRLINE (PL)
Specifies the size of the line in regard of length and line weight
(thickness) in dots.

Summary
To print a line, the following information and instructions must be
given (in some cases default values will substitute missing informa-

tion):

Purpose Instruction Default Remarks

XIY Position PRPOS (PP) 0/0 Number of dots
Alignment ALIGN (AN) 1 Select ALIGN 1-9
Direction DIR 1 SelectDIR1-4

Line spec:s PRLINE (PL) n.a. Length and width in dots
Print a label PRINTFEED (PF) n.a. Resets parameters to default
Example:

10 PRPOS 100,100

20 ALIGN 1

30DIR4

40 PRLINE 200,10

50 PRINTFEED

RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 103

Chapter 10 Label Design

10.7 Layout Files

[0 Font Aliases
See:
* Chapter 12.7?

Introduction

Many application, e.g. in connection with booking and ticketing,
require the label layout as well as variable input data and logotypes
to be sent to the printer as files or arrays. This method requires less
programming in the printer and less data to be transferred between
printer and host, but some kind of overhead program in the host, that
handles file transfers as well as the input of data, is of great help.

The program instruction is a statement calld OUT Before
using this statement, a number of files or arrays must be created.

Creating a Layout File
The basis of the method is a layout file in random format, that

contains a number of records, each with a length of 52 bytes. Each
record can define:

 aline of fixed and/or variable text,

» abar code with fixed and/or variable input data,

* bar code interpretation enable/disable and bar code font select,
» alogotype,

* abox, or

* aline.

Each record starts with a 2-byte hexadecimal element number
(bytes 0-1) which is used to link the layout record with a variable
input record or a record in a layout name file as explained later.

Byte 2 contains a single character that specifies the type of record:
A = Logotype (specified by its name)

B = Bar Code

C = Character (i.e. plain text)

H = Bar Code Font

L = Logotype (specified by its number)

S = Separation line

X =Box

The remaining bytes are used differently depending on type of
record and specify e.g. direction, position, font etc. Each such
instruction corresponds to a UBI Fingerprint instruction, e.g.
direction corresponds BIR statement, alignment BLIGN, x-

and y-positions t’RPOSetc. Note that there are only10 bytes
available for the font and bar font names. Since most names of
standard fonts are longer, you may need to use font aliases.

Text and bar code records can contain both fixed and variable data.
The fixed data (max. 20 characters) are entered in the layout record.
A parameter (bytes 43-44) specifies how many characters (starting
from the first character) of the fixed data that will be printed or used
to generate the bar code. Possible variable data will be appended to
the fixed data at the position specified in bytes 43—44.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 104

Chapter 10 Label Design

10.7 Layout Files, Creating a Layout File, cont'd.:
Syntax of layout file records for text and bar code printing:

contd.
TEXT RECORD:
Element No. (00—FF hex) Char. to be printed
Type of record (C) in byte 23-42

Direction (1-4) Normal (blank) or
Alignment (1-9) Inverse printing (I_)
X-Position (0000-9999) Vertical mag.
(Y-Position (0000-9999) Horizontal mag.

r Font name (10 char.) = Fixed Text (max. 20 char.) — Not used

canpie 01111130 450 [FONTL] | | | [[Fi xed [Text| | ([[[[[]0[i 1] []]

ByteNo. 0 1 2 3 4 5 6 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

BAR CODE RECORD:
Element No. (00—FF hex) Char. to be printed
Type of record (B) in byte 23-42
Direction (1-4) Wide/narrow bar
Alignment (1-9) ratio
X-Position (0000-9999) Magnification
Y Posmon (0000-9999) Not used
Barcode name (10 char.) — Fixed Data (max. 20 char.) T’* Height

MWhPﬂﬂlﬁﬂ@@\B@@\HQQHﬂﬂ\\\IQHW\HWWWHQW\NH\ |13 [31f1] 1o

ByteNo. 0 1 2 3 4 5 6 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

BAR CODE INTERPRETATION RECORD:

Element No. (00—FF hex)
Type of record (H)

Barfi ff
arf(f)nt on/o Not used

1=0n Not used
i
FTNM uoed Not USEdﬁ Barfont name (10 char.) — Not used (Tr Not used
hmmPHHHI\\\I\\\F@Nﬂﬂ\\\\I\\\\\H\\\\\\\\\\\\IH\III\\I

ByteNo. 0 1 2 3 4 5 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 105

Chapter 10 Label Design

10.7 Layout Files, Creating a Layout File, contd.:
Syntax of layout file records for logotype, box and line printing:

]
cont'd.
LOGOTYPE RECORD:
Element No. (00—FF hex)
Type of record (A=Logotype by name, L= Logotype by number) Not used
Direction (1-4) Normal (blank) or
Alignment (1-9) Inverse printing (I_)
X-Position (0000-9999) Vertical mag.
(Y-Position (0000-9999) Horizontal mag.
ogotype name Logotype Number
10 char, only if type=A) r (2 digits, only if type=L) ﬁ Not used

HWWPMPHBBDD\BMWIUHW\ﬂ\\\\I\\\\\\\\\\\\\\\\\\\I\I\HHI\H

ByteNo. 0 1 2 3 4 5 6 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

BOX RECORD:
Element No. (00—FF hex)
Type of record (X) Not used
Direction (1-4) Not used
Alignment (1-9) Not used
X-Position (0000-9999) Not used
Y-Position (0000-9999) Line thickness
r Box Width (0-6000) — Box height (0-6000) F (0-999)
exampie O541[1100] 440 300 | [[[[]10O] [[[[[[[[[[[[[[I[[[[[]B[]

ByteNo. 0 1 2 3 4 5 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

LINE RECORD:

Element No. (00—FF hex)
Type of record (S)

Direction (1-4) Not used
Alignment (1-9) Not used
X-Position (0000-9999) Not used
Y-Position (0000-9999) Not used
(r Line length (0-6000) = Line thickness (0-6000) (TF Not used
MWdeﬁﬂﬂﬂob\ﬂbb\B@@\\\\\\\ﬂ@\\\\\\\\\\\\\\\\\\I\I\III\\I

ByteNo. 0 1 2 3 4 5 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 106

Chapter 10 Label Design

10.7 Layout Files, Creating a Layout File, contd.:
This example shows how a small layout file can be composed:
cont'd.

10 OPEN "LAYOUT.DAT" FOR OUTPUT AS 2 Open random file
20 PRINT #2, " FONT1 " Barfont record
30 PRINT #2, "02C11100 650 FONT1 Fixed Text 11122 ™ Text record
40 PRINT #2, "02C11130 450 FONT1 Fixed Text 011 % Text record
50 PRINT #2, "03B17100 300 CODE39 UBI 3311 100" Bar code record
60 PRINT #2, "04A12300 800 UBI.1 1 Logotype record
70 PRINT #2, "05X11100 440300 100 5" Box record
80 PRINT #2, "06511100 100300 10 " Line record
90 CLOSE 2 Close file

There are certain rules that should be observed:

» Each record must be exactly 52 bytes long and be appended by
a semicolon (}).

* |tis essential that the different types of data are entered exactly
in the correct positions. Any input in unused bytes will be
ignored.

» The records are executed in the order they are entered. The
reference number at the start of each record does not affect the
order of execution. This implies that a barfont record will affect
all following bar code records, but not those already entered.

* When using bar code interpretation, do not enter a bar code
record directly after a record with inverse printing, since the bar
code interpretation will be inversed as well. A text or logotype
record without inverse printing between the bar code record and
the inversed record will reset printing to normal.

Creating a Logotype Name File
Next step is to create a logotype name file. This is a necessary step

even if you are not going to use any logotype in your layout (in this
case the file can be empty). In the layout file, you can set a logotype
record to use logotypes specified either by name or by number.

* If you specify logotype-by-name (record type A), the printer's
entire memory will be searched for an image with the specified
name. A logotype-by-name file is composed by a number of
records with a length of 10 bytes each that contain the image
names, e.g.:

10 OPEN "LOGNAME.DAT" FOR OUTPUT AS 1
20 PRINT#1,"UBI1

30 PRINT#1,"UBI.2

40 PRINT#1, "DIAMONDS.1"

50 PRINT#1, "DIAMONDS.2",

60 CLOSE1

Note that the last record in a sequential file must be appended by a
semicolon (;).

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 107

Chapter 10 Label Design

10.7 Layout Files, Creating a Logotype Name File, contd.:
. * If you specity logotype-by-number (record type L), you must
contd. have a logotype name file. A logotype-by-number file is com-

posed by a number of records with alength of 13 bytes each. The
first 2 bytesis areference number (0—99), the third byte is always
a colon () and the following 10 bytes are used for the image
name:

10 OPEN "LOGNAME.DAT" FOR OUTPUT AS 1

20 PRINT#1,"0:UBI.1

30 PRINT#1,"1:UBI.2

40 PRINT#1, "2 :DIAMONDS.1"

50 PRINT#1, "3 :DIAMONDS.2";

60 CLOSE1

Note that the last record in a sequential file must be appended by a
semicolon (;).

Creating a Data File or Array
Youwillalso need a datafile or data array. This file or array contains

variable data that will be placed in the position specified by the
layout. Each data record starts with a hexadecimal element number
(0O0-FF hex) that links the data to the layout record or records that
start with the same element number. Thus you can e.g. use a single
datarecordto generate anumber of text fields with various locations
and appearances as well as to generate a bar code.

IMPORTANT!
The LAYOUTstatement requires that
you use the same format (either files or
arrays) for both data and errors.

o)

If you for some reason do not use variable data, you will still need
to create either an empty data file or an empty data array.

» Create a data array like this:
10 DIMLAYDATAS$(7)
20 LAYDATAS$(0)="01Mincemeat"

L Arrays
Also see: 30 LAYDATAS$(1)="0AVeal"
+ Chapter 6.10 40 LAYDATAS$(2)="17Roast Beef"

50 LAYDATAS$(3)="3FSausages"
60 LAYDATAS$(4)="02Venison"

70 LAYDATA$(5)="06Lamb Chops"
80 LAYDATA$(6)="7CPork Chops"

* You can create a data file with the same content in a similar way:
10 OPEN "LAYDATA.DAT"FOR OUTPUT AS 1
20 PRINT#1,"01Mincemeat"
30 PRINT#1,"0AVeal"
40 PRINT#1,"17Roast Beef"
50 PRINT#1,"3FSausages”
60 PRINT#1,"02Venison"
70 PRINT#1,"06Lamb Chops"
80 PRINT#L,"7CPork Chops";
90 CLOSE1

Note that the last record in a sequential file must be appended by a
semicolon (;).

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 108

Chapter 10 Label Design

10.7 Layout Files,

cont'd.

L Arrays
Also see:
+ Chapter 6.10

Creating an Error File or Array _
The last requirementis an error file or array that can store any errors

that may occur. If you use a data array, you must use an error array,
and if you use a data file, you must use an error file. The following
errors will be stored and presented in said order:

1

2

If an error occurs in a layout record, the number of the record
(2...nn) and the error number is placed in the error array or file.
If a data record cannot be used in a layout record, an the index
of the unused data record (0...nn) plus the error code -1 is placed
in the error array or file.

Error arrays must be large enough to accommodate all possible
errors. Thus, usel2lM statement to specify a one-dimensional
array with a number of elements thatis twice the sum of all layout
records plus twice the sum of all data records. You should also
include some routine that reads the array, e.g.:

10 DIM QERR%(28)

20 QERR%(0)=0

190 IF QERR%(1)=0 THEN GOTO 260

200 PRINT "-ERROR- LAYOUT 1"

210 1%=0

220 IF QERR%(1%)=0 THEN GOTO 260

230 PRINT "ERROR;QERR%(1%+1);" in record ";QERR%(1%)

240 1%=1%+2

250 GOTO 220

260 PRINTFEED

Error files require a little more programming to handle the error
message, e.g.:

220 OPEN "ERRORS.DAT" FOR INPUT AS 10

230 IF EOF(10) THEN GOTO 280 ELSE GOTO 240

240 FOR A%=1TO 28

250 INPUT #10, A$

260 PRINT A$

270 NEXT A%

280 PRINTFEED

Note that the loop in line 240 must be large enough to accommodate
all possible errors.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 109

Chapter 10 Label Design

10.7 Layout Files, Using the Files in a LAYOUT Statement

Now, you have all the files you need to issuA¥OUtatement.

contd. This statement combines the layout file, the logotype file, the data

file/array, and the error file/array into a printable image. Depending
on whether you have selected to use data and error files or arrays,
the statement will have a somewhat different syntax:
Files:
LAYOUT F, <layout file>, <logotype file> <data file> <error file>
Arrays:
LAYOUT <layout file>,<logotype file>,<data array>,<error array>
Note that you cannot omit any file or array, since the syntax requires
a file name or array designation in each position. If you, for
example, do notrequire any logotype, you must still create an empty
logotype file.
Example:
The example below shows a simple layout created using the layout
statement in combination with data and error arrays:

10 DIM QERR%(28)

20 LAYDATAS$(0)="02Var. input"

30 LAYDATAS$(1)="03 PRINTER"

40 QERR%(0)=0

50 OPEN "LOGNAME.DAT" FOR OUTPUT AS 1

60 PRINT #1, "UBI.1";

70 CLOSE 1

80 REM:LAYOUT FILE

90 OPEN "LAYOUT.DAT" FOR OUTPUT AS 2

100 PRINT #2,"01H1 ~ FONT1 "

110 PRINT #2,"02C11100 650 FONT1 Fixed Text 11122 "

120 PRINT #2,"02C11130 450 FONT1 Fixed Text 011

130 PRINT #2,"03B17100 300 CODE39 UBI 3311 100"

140 PRINT #2, "04A12300 800 UBI.1 11

150 PRINT #2,"05X11100440300 100 5"

160 PRINT #2,"06511100 100300 10 "

170 CLOSE?2

180 LAYOUT "LAYOUT.DAT","LOGNAME.DAT",LAYDATA$,QERR%

190 IF QERR%(1)=0 THEN GOTO 260

200 PRINT "-ERROR- LAYOUT 1"

210 1%=0

220 IF QERR%(1%)=0 THEN GOTO 260

230 PRINT" ERROR "; QERR%(1%+1);" in record "; QERR%(1%)

240 1%=1%+2

250 GOTO 220

260 PRINTFEED

RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 110

Chapter 11

11. Printing Control

11.1 Paper Feed

[0 TESTFEED

To execute a TESTFEED at paper load,
simultaneously press <Shift > + <Feed> on
the printer's keyboard.

In order to provide maximum flexibility, there are a number of
instructions for controlling the paper feed without actually printing

any labels:

CLEANFEED Runs the printer's paper feed mechanism
in order to facilitate cleaning of the print
roller.

FORMFEED Feeds out a blank label (or similar) or

optionally feeds out or pulls back a speci-
fied amount of paper without printing.
TESTFEED Adjusts the label stop sensor or black
mark sensor while feeding out a number
of blank labels (similar).
LBLCOND Overrides the paper feed setup.

The paper is feed past the printhead by a rubber-coated roller driven
by a stepper motor controoled by the firmware. The movement of

the paper is detected by the label stop sensor (LSS) or black mark
sensor (BMS), except when various types of paper strip are used.

The printer's setup in regard Miedia; Media Size; Lengtand
Media; Media Typés essential for how the paper feed will work.
There are four or five different typesiMtdia Typeoptions (also
see the Installation & Operation manual):

. Label (w gaps)

. Ticket (w mark)

. Ticket (w gaps)

. Fix length strip

. Var length strip

When aFORMFEEDESTFEEDor PRINTFEEDstatement is
executed and the paper web is fed out, the photo-electric label stop
sensor detects the front edge of each new label or the rear edge of
each detection gap. Alternatively the black mark sensor detects the
front edge of each black mark.

By performing & ESTFEEperation after loading a new supply

of paper, the firmware is able to measure the distance between the
forward edges of two consecutive labels, thereby determining the
label length, and can adjust the paper feed accordingly. The same
principle applies to tickets or tags with detection gaps and tickets
with black marks.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 111

Chapter 11 Printing Control

11.1 Paper Feed,

cont'd.

In case of paper strip, the LSS will only detect possible out-of-paper

conditions, and the amount of paper feed is decided in two different

ways:

* Fixed length strip
The amount of paper feed for ee€DRMFEEDESTFEERnd
PRINTFEEDoperation is decided by tihdedia; Media Size;
Lengthsetup.

» Variable length strip
At the execution of RINTFEED the firmware will add a
sufficient amount of paper feed after the last printable object to
allow the paper to be torn off. Note that e.g. a blank space
character or a “white” part of an image is also regarded as a
printable object. The length GESTFEEDand FORMFEED
operations is decided by tiedia; Media Size; Lengtetup.

The Feedadjustetup allows you to perform two global adjust-
ments to the paper feed described above:

o Start Adjust

» Stop Adjust

By default, both these two parameters are set to 0, which allows for

proper tear-off operation when there is no requirement of printing

immediately at the forward edge of the label (or equivalent media).

» Start Adjust decides how much paper will be fed out or pulled
back before thEORMFEED'ESTFEEDor PRINTFEEDiIS
executed. Usually, there is a small distance between the dis-
penser shaft or tear off edge and the printhead. Thus, if you e.g.
want to start printing directly at the forward edge of the label, you
must pull back the paper before printing by means of a negative
start adjust value.

» Stop Adjust decides how much extra or less paper will be fed out
after theFORMFEEDESTFEEDr PRINTFEEDSs executed.

Note that so far we have only discussed how the paper feed will

work regardless which program is run or what labels are printed.

There are several ways to let the program control the paper feed
without changing the setup:

FORMFEED

As already mentioned, if thEORMFEEBtatement is issued
without any specification of the feed length, it will feed out a
complete blank label (or the equivalent). But F@RMFEED
statement can also specified as a positive or negative number of
dots. However, it imot recommended to use this facility to
substitute or modify the global Start Adjust and Stop Adjust setup
as a part of the program execution.

LBLCOND
TheLBLCONDBtatement can be used to override the values for the

Start Adjust and/or Stop Adjust set in the Setup Mode. It can also
be usedto disable the LSS/BMS for a specified length of paper feed,
e.g. to avoid text or pictures on the backside of a ticket being

mistakenly detected as black marks, or when using irregularly

shaped labels.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 112

Chapter 11 Printing Control

11.1 Paper Feed,

cont'd.

11.2 Printing

The relation between paper and printhead wheRRIBITFEED
statement is executed decides all positioning along the Y-axis, i.e.
along the paper web. Likewise, the relation between the paper and
the cutting edge whenGUTstatement is executed decides where
the paper will be cut off.

The following instructions are used in connection with the actual

printing:
CuT Activates the optional paper cutter.
CUT ON/OFF Enables/disables automatic cut-off op-

eration in connection with each
PRINTFEEDstatement.
LTS& ON/OFF Enables/disables the label-taken sensor.
PRINT KEY ON/OFF Enables/disablé2RINTFEEDExecution
by means of the Print key.
PRINTFEED Prints a single label, ticket, tag or piece of
strip, or a batch of labels, tickets etc.

CUT

Activates the optional paper cutter. As opposed t&Cth& ON/
OFFstatement (see below), this statement allows you to control the
cutterindependently from tiRRRINTFEEDBstatements. Since there

is alonger distance from the printhead to the cutting edge than to the
tear-off edge, the paper feed may need to be adjusted by means of
the Start- and Stopadjust setup.

CUT ON/OFF

Enables/disables automatic cut-off initiated by d&2RINTFEED
statement and also allows you to decide the distance in dots by
which the paper will be fed out before cutting and pulled back
afterwards.

LTS& ON/OFF

These statements enables or disables the label-taken sensor, which
is an photoelectrical sensor that detects when a label has not been
removed from the printer's outfeed slot, and holds the printing until
the label has been removed.

PRINT KEY ON|OFF
These two instructions can only be issued in the Immediate Mode

and in the UBI Direct Protocol and enables/disables a single
PRINTFEEDoperation to be automatically executed each time the
<Print > key on the printer's built-in keyboard is pressed.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 113

Chapter 11 Printing Control

11.2 Printing, contd.

PRINTFEED (PF)
At the execution of RRINTFEEDstatement, the firmware proc-

esses all previously entered text fields, bar code fields, image fields,
box fields and line fields (see chapter 10) into a bitmap pattern. The
bitmap pattern controls the heating of the printhead dots and the
stepper motor that feeds the paper past the printhead. By default,
eachPRINTFEEDstatement produces one single copy, but the size
of a batch of labels (or the equivalent) can optionally be specified.

After the execution of @ RINTFEEDstatement, the following
statements are reset to their respective default values:

Statement Default

ALIGN 1

BARFONT "Swiss 721 BT", 12, 0, 6, 1, OFF
BARFONT ON/OFF OFF

BARHEIGHT 100

BARMAG 2

BARRATIO 3,1

BARSET "INT20F5", 3,1, 2,100,2,1,2,0,0
BARTYPE "INT20F5"

DIR 1

FONT "Swiss 721 BT", 12,0
INVIMAGE NORIMAGE

MAG 1,1

PRPOS 0,0

This does only affect new statements executed afleRINTFEED
statement, but not already executed statements. The amount of
paper fed out at the execution d?RINTFEEDstatements under
various conditions is discussed in chapter 11.1.

Example (printing identical labels):
10 PRPOS 100, 100

20 FONT "Swiss 721 Bold BT", 14, 10
30 PRTXT'TEST LABEL"

40 PRINTFEED 5

RUN

Example (printing five copies of the same label layout with
consecutive numbering):

10 FORA%=1TO5

20 PRPOS 100, 100

30 FONT "Swiss 721 Bold BT", 14, 10

40 PRTXT"LABEL "A%

50 PRINTFEED

60 NEXT A%

RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 114

Chapter 11 Printing Control

11.3 Length of Last ACTLEN

. This function returns the approximate length in dots of most

Feed Operatlon recently executed paper feed operation. It can for example be used
to determine the length of the labels before printing a list, so the list
can be divided into portions that fit the labels.

Example:

10 FORMFEED
20 PRINT ACTLEN
RUN

11.4 Batch printing The term “Batch Pri_nting” means the process of printing several
labels without stopping the paper feed motor between labels. The
labels may be exact copies or differ more or less in appearance.

When aPRINTFEEDiIs executed, the firmware processes the
program instructions into a bitmap pattern and stores itin one of the
two image buffers in the printer's temporary memory. The image
buffer compensates for differences between processing time and
printing time.

Next step is to use the bitmap pattern to control the heating of the
printhead dots while the ribbon and/or paper is fed past the
printhead. Obviously, the print speed causes the image buffer to be
emptied more quickly.

Normally, when the firstimage buffer is emptied and the printing
is completed, the firmware can process a new bitmap pattern and
store it in the second image buffer. By means dDBAIMIZE
"BATCH" ONstatement, you can make the firmware start process-
ing next label image and store it in the second image buffer while
the first label is still in process of being printed. Thus, by switching
between the two image buffers, a high continous print speed can be

maintained.

There are a number of instructions that facilitate batch printing:

FIELDNO Divides the program into portions that
can be cleared individually.

CLL Clears part or all of the image buffer.

OPTIMIZE "BATCH" ON Enables optimizing.
OPTIMIZE "BATCH" OFF Disables optimizing.

When using batch printing, consider this:

» The program must be written as to allow batch printing.

* Incase of small differences between labels, make @ie @ind
FIELDNOinstructions and write the program so the variable
data are processed last.

» Always use th©OPTIMIZE"BATCH" ONstrategy.

Should a the printer stop between labels, lower the print speed
somewhat. Usually, the overall time to produce a certain number of
labels is more important than the actual print speed.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 115

Chapter 11 Printing Control

11.4 Batch Printing,

cont'd.

CLL & FIELDNO
The image buffer stores the bitmap pattern of the label layout

between processing and printing. The image buffer can be cleared

partially or completely by means ofZL statement.

» Complete clearing is obtained bZaL statement without any
reference to a field (see below) and is useful to avoid printing a
faulty label after certain errors have occurred.

 Partial clearing is used in connection with print repetition when
only part of the label should be modified between the copies. In
this case, th€LL statement must include a reference to a field,
specified by &IELDNOfunction. When &LL statement is
executed, the image buffer will be cleared from the specified
field to the end of the program.

In this example, the text “Month” is kept in the image buffer,
whereas the names of the months are cleared from the image buffer
as soon as they are printed, one after the other:

10 FONT "Swiss 721 Bold BT",18,10

20 PRPOS 100,300

30 PRTXT"MONTH:"

40 PRPOS 100,200

50 A%=FIELDNO

60 PRTXT "JANUARY":PRINTFEED

70 CLLA%

80 FONT "Swiss 721 Bold BT",18,10

90 PRPOS 100,200

100 PRTXT "FEBRUARY":PRINTFEED

110 CLLA%

120 FONT "Swiss 721 Bold BT",18,10

130 PRPOS 100,200

140 PRTXT "MARCH"PRINTFEED

150 CLLA%

RUN

OPTIMIZE "BATCH" ON/OFF
This statement is used to speed up batch printing. The program

execution will not wait for the printing of a label to be completed,
but proceeds executing next label image into the other image buffer
as soon as possible.

The default setting ©®PTIMIZE "BATCH" OFF. However, if all
the following conditions are fulfilledPTIMIZE"BATCH" ON
will automatically be invoked:

* Avalue >1is entered for tHRRINTFEEDstatement.
 LTS&OFF (default)

e CUTOFF (default)

OPTIMIZE "BATCH" ONrevokeOPTIMIZE"BATCH" OFF.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 116

12. Fonts

12.1 Font Types

[J Standard Fonts

Also see:

* Chapter 12.5

+ UBI Fingerprint 7.11 Reference Manual

12.2 Single-byte
Fonts

12.3 Double-byte
Fonts

[0 Unicode
Also see:
* http://www.unicode.org

12.4 Font Direction,
Size and Slant

Chapter 12

UBI Fingerprint 7.xx supports scalable single- and double-byte
fonts in TrueDoc (.PFR = Portable Font Resource) and TrueType
(.TTF) format that comply with the Unicode standard.

TrueDoc fonts in .PFR format can only be obtained from UBI. A
single .PFR file can contain a number of different fonts. Compared
with TrueType fonts, TrueDoc fonts require less memory spaces
and work faster.

UBI Fingerprint 7.11 contains 15 single-byte standard fonts in the
systems parts (“Kernel”) of the permanent memory (device "rom:).

TrueType fonts from sources other the UBI could normally be used
provided they comply with the Unicode standard. Thisis usually the
case with TrueType fonts for Windows 95 and Windows NT.

Single-byte fonts are fonts that are mapped in the range of ASCII
0-127 dec (7-bit communication) or ASCIl 0-255 dec (8 bit
communication). Example of single-byte fonts are Latin, Greek,
Cyrillic, Arabic and Hebrew fonts.

Single-byte fonts are selected by means of the statelr@@Ni&nd
BARFONTsee chapter 10.2 and 10.3 respectively) and the corre-
sponding character set by means of the statéwAefisee chapter
9.1).

Double-byte fonts are fonts that are mapped in the area of ASCII 0-
65,536 dec. 8 bit communication must be selected. This means that
any glyph (i.e. characters, interpunctation marks, symbols, digits
etc.) in the Unicode World Wide Character Standard, can be
specified. In its current version (2.0), Unicode contains 38,885
glyphs. Example of languages that require double-byte fonts are
Chinese, Japanese and Korean.

Double-byte fonts are selected by means of the stat&@&HID

(see chapter 10.2) and the corresponding character set by means of
the statememMASCIsee chapter 9.1). Note that double-byte fonts
cannotbe used for bar code interpretaticBARFON)T

Fonts can be rotated in 4 directions usimyjR statement. Using
theFONTFONTR2ndBARFON$tatements, fonts can be specified

in regard of size in points (1 point = 1/72" = 0.352 mm) and slant
in degrees (clockwise). It is also possible to magnify fonts using a
MAGstatement. This facility is mainly retained for compatibility
with earlier UBI Fingerprint versions, since the printout quality will
suffer. We recommend specifying a larger size in points rather than
using aMAGstatement.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 117

Chapter 12 Fonts

125 Standard Fonts

[J Font Printout Samples
See:
+ UBI Fingerprint 7.11 Reference Manual

12.6 Old Font Names

12.7 Adding Fonts

Note:
Double-byte fonts are often too large
be stored in the printer's memory.

such cases, a Font Card must be ug

to
In

ed.

As standard, the UBI Fingerprint firmware contains 15 single-byte
TrueDoc fonts stored in the systems part (“Kernel”) of the perma-
nent memory. In th&ONTand BARFONBtatements, the full
names according to the list below must be used (case sensitive).
Century Schoolbook BT

Dutch 801 Roman BT

Dutch 801 Bold BT

Futura Light BT

Letter Gothic 12 Pitch BT

Monospace 821 BT

Monospace 821 Bold BT

OCR-A BT (see note)
OCR-B 10 Pitch BT (see note)
Prestige 12 Pitch Bold BT

Swiss 721 BT

Swiss 721 Bold BT
Swiss 721 Bold Condensed BT
Zapf Dingbats BT (see note)

e Zurich Extra Condensed BT

Note:
When selecting OCR-A BT, OCR-B 10 Pitch BT or Zapf Dingbats BT, the
printer will automatically switch from the presently selected character set to
a special one for the font in question (see later in this chapter). As soonas any
other font is selected again, the printer will automatically return tg the
previously selected character set.

To maintain compatibility with earlier versions of UBI Fingerprint,

the old font name convention for naming standard bitmap fonts can
alsobeused, e.g."SWO030RSN" or"MS060BMN.2". The firmware
will select the corresponding TrueDoc font in the printer's memory
and set its parameters so its appearance and size come as close to th
specified bitmap font as possible.

The standard complement of fonts listed in chapter 12.5 can be

supplemented by additional fonts using three different methods:

» Downloading fonts from a Font Install Card.
The card must be inserted before the printer is started. At startup
the fonts are automatically downloaded, installed and perma-
nently stored in the printer's memory. The fonts can be used
without the card being present

» Using fonts from a Font Card.
The card must be inserted before the printer is started. At startup
the fonts are automatically installed, but not copied to the
printer's memory (i.e. the card must always be present before
such a font can be used).

* Downloading font files.
Fontfiles can be downloaded and installed by means of either of
the two statement®IAGE LOADand TRANSFER KERMIT
There is no need to restart the printer before using the font in
guestion.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 118

Chapter 12 Fonts

12.8 Listing Fonts

12.9 Removing Fonts

12.10 Font Aliases

Regardless in which parts of the memory the different fonts are
stored, they can all be listed to the standard OUT channel by a single
statement, namelfONTSThis statement does not list dedicated
bar code fonts.

Another method of listing fonts is to usE@NTNAMEBES$inction,
which also will list dedicated barcode fonts.

Fontfiles can be listed to the standard OUT channel by means of the
FILES statement.

This example shows how all fonts can be listed:
10 A$=FONTNAMES$(0)

20 IFA$=""THENEND

30 PRINTA$

40 A$=FONTNAMES$(-1)

50 GOTO20

RUN

Fontfiles storedinthe read/write devices ("c:", "tmp:"and "cardl:")
can be deleted usinglLL statements. Even if a font file is
KILLED, the name of the font will still be listed e.g. bF@GNTS
statement until the printer is restarted. Note that the names of the
font files may differ from the name of the font.

The names of the standard fonts UBI Fingerprint are rather long and
may be cumbersome to use. They are also incompatible with the
LAYOUBtatement, which restricts the font and barfont namesto 10
characters.

However, itis possible to create afile containing a list of font aliases.
The file should be named exactly as shown here (note the leading
period character that specifies it as a system file):

"c..FONTALIAS"

The format of the file should be:

"<Alias name #1>","<Name of font>"[,size[,<slant>]]
"<Alias name #2>","<Name of font>"[,size[,<slant>]]

"<Alias name #3>","<Name of font>"[,size[,<slant>]]
etc., etc.

The file can contain as many fontname aliases as required. The
default size is 12 points and the default slant.is O

A font alias can be used as any other font, but its size and slant can
not be changed.

Examples:

"BODYTEXT","Century Schoolbook BT",10
"HEADLINE","Swiss 721 Bold BT",18
"WARNING","Swiss 721 BT",12,10

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 119

Chapter 13

13. Bar Codes

13.1 Standard Bar A large number of commonl‘y used” bar code_synlwbologies are
d included in the systems part (“Kernel”) of the printer's permanent
Codes memory.

Some bar codes require special barcode fonts, e.g. UPC and EAN
bar codes.

Bar codes cannot be listed by means of any UBI Fingerprint
instruction. As standard, UBI Fingerprint 7.11 contains the follow-

ing bar codes.

Bar Code Type Designation
Codabar "CODABAR"
Code 11 "CODE11"
Code 39 "CODE39"
Code 39 full ASCII "CODE39A"
Code 39 w. checksum "CODE39C"
Code 93 "CODE93"
Code 128 "CODE128"
DUN-14/16 "DUN"
EAN-8 "EANS"
EAN-13 "EAN13"
EAN-128 "EAN128"
Five-Character Supplemental Code "ADDON5"
Industrial 2 of 5 "C20F5IND"
Industrial 2 of 5 w. checksum "C20F5INDC"
Interleaved 2 of 5 "INT20F5"
Interleaved 2 of 5 w. checksum "|20F5C"
Interleaved 2 of 5 A "|20F5A"
LEB "LEB"

Matrix 2 of 5 "C20F5MAT"
MSI (modified Plessey) "MSI"
Plessey "PLESSEY"
PDF 417 "PDF417"
Philips "PHILIPS"
Philips (alternative designation) "DOT CODE A"
Plessey "PLESSEY"
Straight 2 of 5 "C20F5"
Two-Character Supplemental Code "ADDON2"
UCC-128 Serial Shipping Container Code "UCC128"
UPC-5 digits Add-On Code "SCCADDON"
UPC-A "UPCA"
UPC-D1 "UPCD1"
UPC-D2 "UPCD2"
UPC-D3 "UPCD3"
UPC-D4 "UPCD4"
UPC-D5 "UPCD5"
UPC-E "UPCE"

UPC Shipping Container Code "UpcCscc"
USD5 "USD5"

13.2 Setup Bar Codes Some printers can be setup by means of special Code 128 bar codes
thatare read using a Bar Code Wand. Refer to UBI Fingerprint 7.xx
Reference Manual.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 120

14. IMAGES

14.1 Images vs
Images Files

14.2 Standard Images

14.3 Downloading
Image Files

[0 Downloading via Kermit
Also see:
+ Chapter 6.8

[0 Image Transfer Protocols
Also see:
+ UBI Fingerprint 7.11 Reference Manual

Chapter 14

There is a distinction between “Images” and “Image Files”:
“Image” is a generic term for all kinds of printable pictures, e.qg.
symbols, logotypes or other illustrations, in the internal bitmap
format of UBI Fingerprint.

* “Image Files” are files in various bitmap formats that can be
converted to “Images” in the internal bitmap format of UBI
Fingerprint. Images files can be stored in the printer's memory,
but cannot be used for printing before they have been converted
to “Images”.

As standard, the systems part (“Kernel”) of the printer's permanent
memory contains a number of images primarily used for printing
test labels.

Image files in .PCX format can be downloaded to the printer using
the Kermit protocol and then converted to UBI's internal image
format by means of the instructiBUN "pcx2bmp” (see chapter
6.5) .

Image files in .PCX format can also be both downloaded, automati-
cally convertedtoimages andinstalled by means Bfh6éE LOAD
statement.

Image files in Intel hex formats, or formats according to UBI
Fingerprintfile transfer protocdléBI00,UBIO1,UBIO2,UBIO3,

or UBI10, can be downloaded to the printer using the instructions
STORE IMAGESTORE INPUTandSTORE OFFe.g.:

10 STORE OFF

20 INPUT "Name:", N$

30 INPUT "Width:", W%

40 INPUT "Height", H%

50 INPUT "Protocol:", P$

60 STORE IMAGE N$, W%, H%, P$

70 STORE INPUT 100

80 STORE OFF

RUN

The system variablgY SVARillows you to check the result of an
image download by meansSTORE INPUT

* SYSVAR (16) reads the number of bytes received.

* SYSVAR (17) reads the number of frames received.

Both values are reset when a n8IWORE IMAGEtatement is
executed.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 121

Chapter 14 Images

14.4 Listing Images

14.5 Removing
Images

The names of all images stored in the various parts of the printer's
memory can be listed to the std. OUT channel by means of an
IMAGE Sstatement or a program usingft&GENAMBSinction.

Image files can be listed to the std. OUT channel by means of a
FILES statement.

Example:
This example lists all images the the printer's memory (in this case
only standard images):

IMAGES
yields:
CHESS2X2.1 CHESS4X4.1
DIAMONDS.1 UBI.1
UBI.2 UBI010.1
UBI010.2

1543536 bytes free 307456 bytes used
Ok

Images can be removed from the read/write devices (i.e. "c:",
"tmp:" and "card1:") usinREMOVE IMAG&atements.

Images files can be removed from the read/write devices (i.e. "c:",
"tmp:" and "card1:") using KILL statement.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 122

Chapter 15

15. Printer Function Control

15.1 Keyboard All UBI Fingerprint 7.xx-compatible printers are provided with a
built-in keuboard containing a set of numeric keys supplemented

Note: ‘{ with a number of function keys. Separate alphanumeric keyboards

External keyboard do not work in the gre available as options.

Setup Mode.

The keys have three purposes:

» Tocontrol the printer in the Setup Mode, and to some extent also
in the Immediate Mode.

* To enter input data in the form of ASCII characters.

» Tomake the program execution branch to subroutines according
to ON KEY...GOSUBstatements.

Note that input from the printer's keyboard (see chapter 7.6)
excludes the use @N KEY...GOSUBstatements (see chapter
5.8) and vice versa.

Controlling the Printer in the Setup and Immediate Modes:
* The use of the keyboard in the Setup Mode is described in the

Installation & Operation manual for the printer model in ques-
tion.
* Inaprinter running in the Immediate Mode, only four keys are
working:
- The Lrint> key or button produces=®RMFEE®&peration,
or — if the printhead is lifted — runs the printer's print roller a
number of rotationsin order to facilitate cleanfOgfEANFEED
- The FFeed> key works the same way as theriat > button.
- The <Shift> + <Print > keys pressed simultaneously produce
aTESTFEEDperation.
- The Setup> key gives access to the Setup Mode.
* In the Immediate Mode, the printing of labels by means of the
print key can be enabled or disabled usiRiRENT KEY ON/
OFFstatement, also see chapter 11.3.

Enabling the Keys

Before a key can be used to make the execution branch to a
subroutine using &0N KEY...GOSUBstatement, the key must be
enabled using KEY...ON statement. Enabled keys can also be
disabled again usingeY...OFF statements.

However, the keyboard can also be used to enter input data
(provided "console:" ®PENedorINPUT), and also be used inthe
Setup and Test Modes, regardless if the keys are enabled or not.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 123

Chapter 15 Printer Function Control

15.1 Keyboard, contd.

Key Id. Numbers
The keys are specified by id. numbers in connections with the
following statements:

KEY...ON Enables the specified key.
KEY...OFF Disables the specified key.
ON KEY...GOSUB... Branches the program execution to a sub-

routine when the specified key is pressed.

Each key has two id. numbers, one fouitshifted position and
another for itshifted positiort. To select the shifted position of a
certain key, keep theShift> key depressed while you press the
desired key. The id. number of the shifted key is equal to its
unshifted id. number + 100. For example, tlkd><key has id.
number 10 in unshifted position, but id. number 110 in shifted
position.

The illustration below shows the default id. numbers of the key-
board of the EasyCoder 501 XP. The id. number of Bret>
button or key also applies to printers models without keyboard.

If the keyboard is remapped (see later in this chapter), the id.
numbers will be affected.

EasyCoder | 501 XP ‘

Enter

Actual keyboard
apperance

e o fe EasyCoder | 501 XP

] i

@E@Eaa> | Unshifted keys
Ao I a» @ a DI DIED) i.d. numbers
DO Ao

""""" o mwo o EasyCoder | 501 XP

] 010

Shifted keys

WoUDUD WD UD QD W W0 i.d. numbers
G Q2D 7>

UBI Fingerprint 7.11 — Programmer's Guide Ed. 1 124

Chapter 15 Printer Function Control

15.1 Keyboard, contd.

Key-initiated Branching
What will happen when an enabled key is pressed can be decided

by anON KEY...GOSUB statement, that branches the program
execution to a subroutine, where additional instructions specify the
action to be taken. Refer to chapter 5.8 for further information and
additional program example.

Here is an example of how two keyB {32 and <F2>) are enabled
and used to branch to different subroutines. The keys are specified
by their id. numbers (10 and 11 respectively):

10 KEY (10) ON: KEY (11) ON

20 ONKEY (10) GOSUB 1000

30 ONKEY (11) GOSUB 2000

40 GOTO40

50 END

1000 PRINT "You have pressed F1"

1010 RETURN 50

2000 PRINT "You have pressed F2"

2010 RETURN 50

RUN

Audible Key Response

Eachtime akey is pressed, the printer's beeper will, by default, emit
a short signal (1200 Hz for 0.03 sec). The frequency and duration
of the signal can be globally changed for all keys by meandfa
BEEPstatement. Obviously, setting the frequency and/or duration
to O will turn off the signal for all keys.

Input from Printer's Keyboard:
Provided "console:" ®PENedor sequentidNPUT, the keys can

be used to enter ASCII characters to the program using the
following instructions:

INPUT# reads a string of data to a variable.

INPUTS$ reads a limited number of characters to a
variable.

LINE INPUT# reads an entire line to a variable.

Refer to chapter 7.6 for a table showing the ASCII values that the
various keys generate and for a program example. Note that input
from keyboard does not require any keys to be enabled.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 125

Chapter 15 Printer Function Control

15.1 Keyboard, contd.

Remapping the Keyboard

The keyboards of the various printer models are fully remappable
(with exception for the Shift> key), as to allow the printer to be
adapted to special applications or national standards using the
instructionKEYBMAPS$Thus you can decide which two ASCII
characters each key will produce, with and without the Shift key
being activated. The mapping also decides the id. numbers for the
keys.

The basis of the remapping process is the position number of each
key, as illustrated for the EasyCoder 501 XP below. Note thatin the

Setup Mode, the keys have fixed positions that are not affected by
anyKEYBMAP#structions.

Note the distinction between id. numbers and position numbers!

ISIOIOICOICICICY)
W ®E®H®®
SIOIOIOISICIEIEIOIOICICICY
I OIOICICIEOIEIOICICICHICY,
OO @EEE @ @ E

Keyboard position numbers on an EasyCoder 501 XP. The keys
printed on the keyboard overlay are marked with a shade of grey.
Key positions 1 and 30 cannot be remapped.

EasyCoder | 501 xP ‘

OO J Actual keyboard
DD S apperance
C. o I c N7 D

o b0 o EasyCoder | 501 XP

] R —
& E @@ | Unshifted keys
OOEEOE @D GO GD ASCI| values
<> Lo

EasyCoder | 501 XP

] 5 B
Shifted keys
@D GO BD B BD D T TP ACII values

UBI Fingerprint 7.11 — Programmer's Guide Ed. 1 126

Chapter 15 Printer Function Control

15.1 Keyboard, contd.

Remapping the Keyboard, cont'd.
The presentkeyboard mapping can be read to a string variable using
the KEYBMAP#struction with the following syntax:

<string variable>=KEYBMAP$(n) where....
n=0 reads the unshifted characters.
n=1 reads the shifted characters.

This example reads the unshifted characters on the keyboard of an
EasyCoder 501 XP. Non-existing key positions get ASCII value O:
10 PRINT "Pos","ASCII","Char."

20 A$=KEYBMAP$(0)

30 FORB%=1TO 64

40 C$=MID$(A$,B%,1)

50 E%=ASC(C$)

60 PRINT B%,E%,C$

70 NEXT

RUN

You can also use tiEY BMAPRIstruction to remap the keyboard,
using the following syntax:

KEYBMAP$(n) = <string> where...

n=0 mapstheunshifted charactersinascending position number
order.

n=1 maps the shifted characters in ascending position number
order.

The string that contains the desired keyboard map should contain
the desired character for each of 64 key positions (in ascending
order) regardless if the keyboard contains that many keys.

Characters, that cannot be produced by the keyboard of the host, can
be substituted bgHR%unctions, where the character is specified

by its ASCII decimal value according to the selected character set
(seeNASGstatement). The same applies to special characters. See
table below.

Non-existing key positions are mapped as NullGleR$(0) .

ASCII decimal values for Special Keys

Key Unshifted Shifted
F1 1 129
F2 2 130
F3 3 131
F4 4 132
F5 5 133
Pause 30 158
Setup 29 157
Feed 28 156
Enter 13 141
C (Clear) 8 136
Print 31 159

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 127

Chapter 15 Printer Function Control

15.1 Kevboard. contd. Remapping the Keyboard, cont'd.
y ’ The following example reads back the current keyboard map and

changes the E1> key to A, the £2> key to B, and the 3> key

to C:
10
20

30
RUN

A$=KEBMAP$(0)

B$=LEFTS(AS, 1)+"A"+MIDS(AS,3,4)+"B"+
MID$(A$,8,4)+"C"+MID$(AS$,13)
KEYBMAP$(0)=B$

The following example illustrates the mapping of the keyboard for
an EasyCoder 501 XP (unshifted keys only). Note the limit of max.
300 characters per program line:

10

20

30

40

50
RUN

B$=CHR$128+CHR$1+STRING$(4,0)+CHR$(2)+
STRING$(4,0)+CHR$(3)
B$=B$+STRING$(4,0)+CHR$(4)+STRINGS(4,0)+
CHR$(5)+STRING$(18,0)
B$=B$+".147"+CHR$(0)+"0258"+CHR$(0)+
CHR$(8)+"369"+CHR$(0)+CHR$(31)
B$=CHR$(0)+CHR$(28)+CHR$(30)+STRING$(2,0)+
CHR$(13)+CHR$(29)+CHR$(0)

KEYBMAP$(0)=B$

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 128

Chapter 15 Printer Function Control

15.2 Display

[0 Clearing the Display

Also see:

« “Cursor Control: Clearing the Display” later
in this chapter.

All present UBI Fingerprint 7.xx-compatible printers have<d 8
characters LCD (Liquid Crystal Display). The UBI Fingerprint
firmware uses it to show a number of standardized messages, e.g.
in the Setup Mode, but it can also be controlled by programming
instructions (se€Output to Display” below). The display is
provided with a controllable cursor, as described later in this chapter
(“Cursor Control”).

Output to Display
Before you can print any text to the display, it must be opened for

sequential output, e.g.:
10 OPEN "console:" FOR OUTPUT AS 1

Then you should clear any previously displayed message by
sending two empti?RINT# or PRINTONE#statements:
20 PRINT#1:PRINT#1

Now you can send a string to each of the two lines. Note the
appending semicolon on the second line:

30 PRINT#1, "Upper line"

40 PRINT#L, "Lower line";

RUN

This will result in the following message being displayed:

Upper line
Lower line

As a alternative to sending two separate lines, you can also send a
single line consisting of max. 33 characters, where:

» Character 1-16 specifies the upper line

* Character No. 17 is not displayed at all

» Character No. 18-33 specifies the lower line

» The line should be appended by a semicolon (;).

Using this method, the example above would look like this (under-
score characters indicate space characters):

10 OPEN "console:" FOR OUTPUT AS 1

20 PRINT#1:PRINT#1

30 PRINT#1,"Upper line Lower line";

RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 129

Chapter 15 Printer Function Control

15.2 Display, contd.

Cursor

T2 lLOower line

Cursor Control

The cursor control instructions can be used for four purposes:

* To clear the display from messages (as an alternative to the
doublePRINT# statement on line 20 in the example above).

» To enable or disable the cursor.

» To select cursor type (underscore or block/blink)

» To place the cursor at a specified position or to move it.

The cursor is either a black line under a character position in the
display, or a blinking block that intermittently blacks out the
character position:

Positon:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
irer | UPppPper line

Jlpper line
Lower line

Each cursor control command should start with the character CSI
(Control Sequence Introducer) = ASCII 155 decimal, or (in case of
7-bit communication) with the characteESSC’ + “[” (ASCII 27

+ 91 decimal).

Clearing the Display:

Syntax: <CSI> + <<0|12>J> where:
csl = ASCIl 155 dec.

0 = From active position to end, inclusive (default)

1 = From start to active position, inclusive

2 = All of the display

J = Must always append the string

Example (clears all of the display):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "2J",

Selecting Cursor Type:

Syntax: <CSI> + <4p|5p> where:
csi = ASCII 155 dec.
4p = Underscore

5p Block/Blink (default)

Example (selects underscore-type cursor):
10 OPEN "console:* FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "4p";

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 130

Chapter 15 Printer Function Control

15.2 DiSplay, cont'd. Cursor Control, contd.:
Enabling/Disabling the Cursor:

Syntax: <CSI> + <2p|3p> where:

ASCII 155 dec.
2p Cursor On
3p Cursor Off (default)

Example (enables the cursor):
10 OPEN "console:* FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "2p";

CSl

Note that a semicolon should appendR#&INT# instructions in
order to avoid interfering with existing messages in the display.

Setting the Absolute Cursor Position:
Syntax: <CSI> + <<v>;<h>H> where:

ASCII 155 dec.

Is the line (1 = Upper; 2 = Lower)

h Is the position in the line (1-16)

H Must always append the string

If v, h or both are missing, the default value is 1.

CSl
v

Example (setting the cursor in upper left position):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "H";

Example (setting the cursor in lower right position):
10 OPEN "console:" FOR OUTPUT AS 1
20 PRINT#1, CHR$(155) + "2;16H";

Move the Cursor Relative Current Position:
Syntax: <CSI><n>A|B|C|D where:

ASCII 155 dec.

Is number of steps relative current position (default 1)
Is direction Up

Is direction Down

Is direction Forward

Is direction Backward

CSl

OO W > S

The relative movement must not place the cursor outside the display
area (2< 16 positions) or the instruction will be ignored.

Example (moving the cursor from the first position in the upper line
to the last position in the lower line):

10 OPEN "console:' FOR OUTPUT AS 1

20 PRINT#1, CHR$(155) + "1B";

30 PRINT#1, CHR$(155) + "15C";

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 131

Chapter 15 Printer Function Control

15.3 LED Control
Lamps

Beside showing messages in the printer's display window (see
chapter 15.2, the program can use two of the three LED's (Light
Emitting Diodes) on the printer's front panel to notify the operator
of various conditions.

There are two statements for control the LED's:
LED...ON Turns the specified LED on.
LED...OFF Turns the specified LED off.

The printer's front panel contains three LED's labelled "Power”,

"Ready” (0), and "Error” (1):

* The“Power” LED is connectedto the printer's power supply and
is lit when the power is on. It cannot be controlled by the
program.

* Thetwoother LED's (“Ready”and “Error”) can be programmed
at will usingLED...ON andLED...OFF statements, even
though the printed text on the keyboard imposes certain restric-
tions.

Example:

In this example, the “Ready” LED (0) is lit until an error occur.
Thenthe “Error” LED (1) islitinstead. The “Error” LED remains
lit until the error is cleared. A suitable error can be generated by
running the program with the printhead lifted.

10LED O ON

20 LED 1 OFF

30 ON ERROR GOTO 1000

40 PRPOS 100,100

50 FONT "Swiss 721 Bold BT",36

60 PRTXT "OK!"

70 PRINTFEED

80 LED 0 ON

90 LED 1 OFF

100 END

1000 LED 0 OFF

1010 LED 1 ON

1020 RESUME

RUN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 132

Chapter 15 Printer Function Control

154 Buzzer In addition to the visual signals given by means of the display and
the LED control lamps (see chapter 15.2 and 15.3), audible signals
can also be initiated by the program execution in order to notify the

operator.

The following instructions can be used:

BEEP Initiates a short signal of fixed frequency
and duration.

SOUND Initiates a signal vith variable frequency

and duration.

The buzzer can be controlled by eith&EEPstatement, which
gives a short shrill signa800 Hz for 0.25 sec.), or bySOUND
statement, which allows you to vary both the frequency and
duration. You can even compose your own melodies, if your
musical ear is not too sensitive!

In this example, a warning signal is emitted from the buzzer e.g.
when the error “printhead lifted” occurs and keeps sounding until
the error is cleared. A short beep indicates that the printer is OK.
10 ON ERROR GOTO 1000

20 PRPOS 100,100

30 FONT "Swiss 721 Bold BT", 36

40 PRTXT "OK!"

50 PRINTFEED : BEEP

60 END

1000 SOUND 880,25 : SOUND 988,25 : SOUND 30000,10

1010 RESUME

RUN

15.5 Clock/Calendar The UBI Fingerprint 7.xx-compatible printers are fitted with a real-
time clock circuit (RTC). The RTC is battery backed-up and will
keep running even when the printer is turned off.

Please refer to chapter 9.3 for information on how to read the
printer's clock/calendar, and on the standard formats for date and

time.

The following instructions are to set the clock/calendar:

DATES$ = <sexp> Sets the date (YYMMDD format)

TIME$ = <sexp> Sets the time (HHMMSS format)
Example (setting the clock/calendar to 08.11.30 January 23,
1998):

DATES$ = "980123"
TIME$ = "081130"

Note that the values must always be entered as string expressions.
Possible numeric expressions can be converted to string format
usingSTR$functions (see chapter 9.2).

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 133

Chapter 15 Printer Function Control

15.6 Printer Setup

[J UBI Shell Startup Program
Also see:
« Installation & Operation manual

The printer's setup can be changed manually in the Setup Mode
using the built-in keyboat@r remotely be means of the Terminal
Setup in UBI Shell.

Detailed information on the methods of manual or terminal setup
and the various setup parameters can be found in the Installation &
Operation manual for the printer model in question.

If you want to change some setup parameter either by remote
control (other than Terminal Setup) or as a part of the program
execution, you can use tBETUPstatement.

SETUP

This statement can be used in four different ways:

SETUP Makes the printer enter the Setup Mode.
SETUP WRITE Creates a copy of the printer's current

setup and saves it as a file in the printer's
memory under a specified name or re-
turns the current setup to the specified
communication channel.

SETUP<file name> Changes some or all of the setup param-
eters in the printer's current setup accord-
ing to a setup file.

SETUP<string> Changes a single setup parameter.

Reading the Current Setup
The easiest way to read the printer's current setup is t&ESe P

WRITEstatement to return the setup to the serial communication
channel used for output to the host (usually "uartl:").

Example:
SETUP WRITE "uart1."

Creating a Setup File
Create a setup file using UBI Fingerprint instructions like this:

* OPENM file for sequentiadDUTPUTSee chapter 8.3.

» Use &PRINT# statement to enter each parameters you want so
change. The input must follow the stipulated syntax exactly (see
the UBI Fingerprint 7.xx Reference Man& TURstatement).

* CLOSEhe file.

/. An external keyboard cannot be

used in the Setup Mode.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 134

Chapter 15 Printer Function Control

15.6 Printer Setup,

cont'd.

Changing the Setup using a Setup File
Use 8ETUP<filename> statementto change the printer's setup.

If the setup file is stored in another part of the printer's memory than
the current directory, the file name should contain a reference to the
device in question.

In the following example, we will first save the current setup under

a new file name and then make a setup file that changes the size of
the transmit buffer on "uartl:" just a little. Finally, we use the setup
file to change the printer's setup.

10 SETUP WRITE "SETUP1.SYS"

20 OPEN"SETUPTEST.SYS"FOR OUTPUT AS #1

30 PRINT#L1,"SER-COM,UART1,TRANS BUF,310"

40 CLOSE #1

50 SETUP"SETUPTEST.SYS"

RUN

Changing the Setup using a Setup String

A single setup parameter can be changed without creating any file.
The SETUPstatement should be followed by a string following
exactly the same syntax as the corresponding parameter in a Setup
file, but without any leading@RINT# statement.

The same change as in the example above would look this way when
using a setup string:
SETUP"SER-COM,UART1,TRANS BUF,310"

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 135

Chapter 15 Printer Function Control

15.7 System Variables

Some sensors and other conditions can be read or set by means of

the SYSVARsystem variable.

SYSVAR

The followingSYSVAR parameters are released for public use:

SYSVAR(13) returns the value of the ribbon counter
(requires an optional sensor)

SYSVAR(14) returns the number of errors since last
power on.

SYSVAR(15) returns the number of errors since the
previously executeYSVAR(15) in-
struction.

SYSVAR(16) returns the number of bytes received at
the execution of &8TOREor STORE
INPUT statement.

SYSVAR(17) returns the number of frames received at
the execution of &TOREor STORE
INPUT statement.

SYSVAR(18) returns or sets the verbosity level.

SYSVAR(19) returns or sets the type of error messages
transmitted by the printer.

SYSVAR(20) returns O if the printer is set up for direct
thermal or 1 if set up for thermal transfer
printing.

SYSVAR(21) returns the printhead density in dots/mm.

SYSVAR(22) returns the number of dots in the print-
head.

SYSVAR(23) returns 1 if a transfer ribbon is detected,
else 0.

SYSVAR(24) returns 1 if a power-up has been per-
formed since lassYSVAR(24), else 0.

SYSVAR(25) returns or selects the type of Centronics
communication on the parallel communi-
cation port "centronics:":

SYSVAR(25)=0 Standard type
SYSVAR(25)=1 IBM/Epson type
SYSVAR(25)=1 Classic type

SYSVAR(28) decides if the information on the position
of the paper vs the printhead should be
cleared or not when the printhead is lifted.

SYSVAR(32) returns the odometer value, i.e. the length

of paper that have been fed past the print-
head in kilometres.

» Parameter 13 is intended for use with the optional ribbon low

sensor Kit.

» Parameters 14 and 15 are primarily intended for service pur-

poses.

» Parameters 16 and 17 are used in connection with transfer of
images from the host to the printer and are explained in chapter

14.3.

UBI Fingerprint 7.11 — Programmer's Guide Ed. 1

136

Chapter 15 Printer Function Control

15.7 System
Variables, contd.

» Parameter 18 is used for returning or setting the printer's
verbosity level, i.e. the printer's response to received instructions
as explained in chapter 7.7.

» Parameter 19 is used for returning or selecting one of four types
of error messages, see chapter 16.1.

» Parameter 20 checks if the printer is printer is set up for direct
thermal printing or thermal transfer printing, which depends on
the choice of paper type in the Setup Mode, see the Technical
Manual.

» Parameters 21 and 22 are used to check the printhead in regard
of printhead density and number of dots respectively. Together
with parameter 20 and théERSIONS$function, see chapter
15.11, these parameters allows the program to identify different
printer models. Thereby it is possible to design programs that
will work in all EasyCoder printers.

» Parameter 23 checks the status of the ribbon end sensor in
thermal transfer printers.

» Parameter 24 is useful, when certain data, e.g. date and time
formats, are not generated as a part of the program execution.
Since such data are stored in the temporary memory, they will
be lost at power-up or reboot. UsBYSVAR(24), the printer
can be polled for power-ups, so lost data can be renewed.

» Parameter 25isimportantto adaptthe printer for the correct type
of Centronics communication. Default setting is IBM/Epson
type.

» Parameter 28 is intended for applications where high printout
accuracy is required, e.g. when using very short labels. If the
printhead is lifted, the paper will almost certainly be moved
somewhat and the printout on the labels between the printhead
and the LSS will not be positioned correctly. By chosing to clear
the paper feed information when the printhead is lifted and then
performing alESTFEEDO get new paper feed data, any such
errors will be avoided.

» Parameter 32 is mainly used by service technicians.

For detailed explanations, please refer to the UBI Fingerprint 7.11
Reference Manual.

Example showing how the error type is setfrom the host and the new
setting is read back:
10 INPUT "Error type: ", A%

20 SYSVAR(19)=A% (sets error type)
30 B%=SYSVAR(19) (reads error type)
40 PRINT "The error type is set to: "; B%
RUN

yields e.g.
Error type: 2

The error type is set to: 2

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 137

Chapter 15 Printer Function Control

15.8 Printhead

[0 Setup Mode

Also see:

« Chapter 15.6

« Installation & Operation manual

In addition to the setup, four instructions can be used to check and
control the thermal printhead.

SYSVAR
Two parameters in the system variaB¥SVARallows you to
check the printhead, also see chapter 15.7:

SYSVAR(20) returns if the printer is set up for direct
thermal or transfer printing.

SYSVAR(21) returns the printhead density in dots/mm.

HEAD

TheHEADfunction allows you to identify possible faulty dots by
means of abnormal resistance values. This application is closely
connected to th8ET FAULTY DO&ndBARADJUS $tatements,

see below. Note that some printhead errors, e.g. cracked or dirty
dots, will not be detected by this function, since only the resistance
IS measured.

SET FAULTY DOT

This statement is used to mark specified dots on the printhead as
faulty, either manually or automatically in connection wiHEsAD
function. Then, using BARADJUSEtatement (see below), you
can adjust the location of picket fence bar codes so the dots marked
as faulty will not affect the printing, i.e. the faulty dot(s) will be
situated between the bars.

You can also revoke all previoBET FAULTY DO€$tatements by
marking all dots as correct.

BARADJUST
This statement enables automatic horizontal relocation of picket

fence bar codes within specified limits. The software will keep
record of all dots marked as faulty (ST FAULTY DO@&bove)

and relocate the bar code as to place the spaces between the bars ir
line with the faulty dot(s). Thereby, it will be possible to use the
printer pending printhead replacement.

Note that th® ARADJUS$tatement cannot be used for ladder bar
codes, stacked bar codes (e.g. Code 16K), bar codes with horizontal
lines (e.g. DUN-14), EAN/UPC bar codes, or two-dimensional bar
codes (e.g. PDF-417).

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 138

Chapter 15 Printer Function Control

15.8 Printhead. contd. This example shows how a program can be made that checks the
’ printhead for faulty dots and warns the operator when a faulty dot
is encountered. Pending printhead replacement, the bar code is
repositioned to ensure continued readability. Such a program takes
a few seconds to execute (there may be more than a thousand dots
to check), so itis advisable either to restrict the dot check to the part
of the printhead that corresponds to the location of the bar code, or
to perform the test at startup only.
10 OPEN "console:" FOR OUTPUT AS 10
20 IF HEAD(-1)<>0 THEN GOTO 9000
30 BEEP:D1$="Printhead Error!":D2%$=""GOSUB 2000
40 GOSUB 1000
50 BARADJUST 20,20
60 GOTO 9000
1000 FUNCTEST "HEAD",TMP$
1010 A$="":TMP%=INSTR(TMP$A$)+1
1020 RETURN
1030 SET FAULTY DOT -1
1040 QMEAN%=HEAD(-7)
1050 QMIN%=QMEAN%+*85\100
1060 QMAX%=QMEAN%*115\100
1070 FOR 1%=0 TO WHEAD%-1
1080 QHEAD%=HEAD(1%)
1090 IF QHEAD%>QMAX% OR QHEAD%<QMIN% THEN SET FAULTY
DOT 1%
1100 NEXT
2000 PRINT #10 : PRINT #10, LEFT$(D1$,16)
2010 PRINT #10, LEFT$(D2$,16);
2020 RETURN
9000 PRPOS 200,20
9010 BARTYPE "CODE39"
9020 BARRATIO 2,1 : BARMAG 2
9030 BARHEIGHT 150
9040 PRBAR "1234567890"
9050 PRINTFEED
9060 END

159 Transfer Ribbon ~ SYSVAR _ .
Anumber of parametersinthe system vari8M8VARan be used

to check the transfer ribbon, also see chapter 15.7:

SYSVAR(13) returns the value of the optional ribbon
counter (some models only).

SYSVAR(20) returns if the printer is set up for direct
thermal or transfer printing.

SYSVAR(23) returns if a transfer ribbon is fitted or not.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 139

Chapter 15 Printer Function Control

15.10 Memory Test FUNCTEST _ .
The FUNCTEST statement is used to perform the following tests

and place the result in a string variable:

» Testofamemory card (DOS-formatted or non DOS-formatted).

» Test of the printhead in regard of number of dots, head lifted or
possible errors.

» Test of the sysyems part of the printer's permanent memory
(“Kernel”).

* Test of ROM SIMMs.

Example usinfUNCTES®n an EasyCoder 501 XP. The program
takes a few seconds to execute:
10 FUNCTEST "CARD", A$
20 FUNCTEST "HEAD", B$
30 FUNCTEST "KERNEL", C$
40 FUNCTEST "ROM1", D$
50 PRINT"CARDTEST:", A$
60 PRINT "HEADTEST:", B$
70 PRINT "KERNELTEST:", C$
80 PRINT"ROM1-TEST:", D$
RUN
yields e.g.:
CARDTEST: NO CARD
HEADTEST: HEAD OK,SIZE:1280 DOTS
KERNELTEST: 8E4791DC
ROM1-TEST: NO ROM

Ok

FUNCTESTS
The FUNCTEST#unction is very similar to th&UNCTEST
statement and is used for the same purposes. Due to the different
syntax, programming is more simple:
10 PRINT "CARDTEST:", FUNCTEST$ ('CARD")
20 PRINT "HEADTEST:", FUNCTESTS$ ("HEAD")
30 PRINT"KERNELTEST:", FUNCTEST$ ("KERNEL")
40 PRINT "ROM1-TEST:", FUNCTEST$ ("ROM1")
RUN
yields e.g.:
CARDTEST: NO CARD
HEADTEST: HEAD OK,SIZE:1280 DOTS
KERNELTEST: 8E4791DC
ROM1-TEST: NO ROM

Ok

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 140

Chapter 15 Printer Function Control

15.11 Version Check VERSIONS _ L
TheVERSION%unction returns one of three characteristics of the

printer:

VERSION$(0) returns the software version (e.g. “UBI
Fingerprint 7.11")

VERSION$(0) returns the printer family (e.g. “501XP").

VERSION$(0) returns the CPU board generation (e.g.

“hardware version 2.17).

This instruction allows you to create programs that will work with
several different printer models. For example, you may use the
VERSION%unction to determine the type of printer and select the
appropriate one of several different sets of setup parameters.

Example (sets the setup according to the type of printer):

10
20
30
40
50
60
70
1000
1010
2000
2010
3000
3010
4000
4010

A$=VERSIONS$(1)

IF A$="501" THEN GOTO 1000

IF A$="601" THEN GOTO 2000

IF A$="501XP" THEN GOTO 3000
IF A$="601XP" THEN GOTO 4000

SETUP "SETUP501.SYS"
GOTO 60

SETUP "SETUP601.SYS"
GOTO 60

SETUP "SETUP501XP.SYS"
GOTO 60

SETUP "SETUPG601XP.SYS"
GOTO 60

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 141

Chapter 16

16. Error-Handling

16.1 Standard
Error-Handling

Y. Foraworking two-way communication,
three conditions must be fulfilled:

« Serial communication

« Std IN channel = Std OUT channel

* Verbosity enabled.

UBI Fingerprintis intended to be as flexible as possible. Thus, there
are very few fixed error-handling facilities, but instead there are a
number of tools for designing error-handling routines according to

the demands of each application.

The following error-handling facilities are always available:

Out-of-Media Detection

Provided the printhead is lowered, the firmware will check for
three possible errors when either tReirt > or <~eed> key on

the printer is pressed. If an error is detected, a message will
appear in the display:

- Error 1005 (Out of paper)

- Error 1031 (Next label not found)

- Error 1027 (Out of ribbon — thermal transfer printers only)
After the error has been attended to, the error message can be
cleared by pressing any of the keys.

Syntax Check

Each program line or instruction that is received on the standard
IN channel will be checked for possible syntax errors before it

Is accepted. Provided there is a working two-way communica-

tion', possible syntax errors will be transmitted to the host on the
standard OUT channel, e.ti-eature not implementedor

“Font not found”.

Execution Check

Any program or hardware error that stops the execution will be
reported on the standard OUT channel, provided there is a
working two-way communicatidnin case of program errors,

the number of the line where the error occurred will also be
reported, e.dField out of label in line 1107 After the error has

been corrected, the execution must be restarted by means of a
newRUNstatement, unless there is a routine for dealing with the
error condition included in the program.

Error Messages
By means of the system variaBi¥SVAR(19), see chapter 15.7,

you can choose between four types of error messages as illustrated
by the following examples using error #19:

1.

2.
3.
4.

“Invalid font in line 10” (default)
“Error 19 in line 10: Invalid font”

HE19”

“Error 19 in line 10"

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 142

Chapter 16 Error Handling

16.2. Tracing
Programming
Errors

16.3 Creating an
Error-Handling
Routine

Y. Foraworking two-way communication,
three conditions must be fulfilled:
 Serial communication

« Std IN channel = Std OUT channel

* Verbosity enabled.

TRON/TROFF

Large program can be difficult to grasp. If the program does not
work as expected, it may depend on some programming error that
prevents the program from being executed in the intended order.
TheTRON(Trace On) statement allows you to trace the execution.
When the program is run, each line number will be returned on the
standard OUT channel in the order of execution, provided you have
a working two-way communicatién

TROFHTrace Off) disableSRON

In most application programs, it is useful to include some kind of
error-handler. Obviously, how comprehensive the error-handler
needs to be depends on the application and how independent from
the host the printer will work. In this chapter, we will explain the
general principles and the related instructions and in chapter 16.4,
you will find an example on how an error-handling program can be
composed.

ON ERROR GOTO...

This statement is described in more detail in the chapter 5.8. It is
used to branch the execution to a subroutine if any kind of error
occurs when a program s run. The major benefitis that the program
will not stop, but the error can be identified and dealt with. The
execution can then be resumed at an appropriate program line.

ERR

TheERRunction returns the reference number of an error that has
occurred. The actual meaning of the numbers can be found in the
chaptefr'Error Messages”in the UBI Fingerprint 7.11 Reference
Manual.

ERL
TheERLfunction returns the number of the line on which an error

has occurred.

RESUME

This statement is used resume the execution after the error has been
taken care of in a subroutine. The execution can be resumed at the
statement where the error occurred, at the statement immediately
following the one where the error occurred, or at any other specified
line. Also see chapter 5.8.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 143

Chapter 16 Error Handling

3. Creating an
Error-Handling
Routine, contd.

[0 Logical Operators
Also see:
+ Chapter 4.9

Example:

The four instructions described above can be used to branch to a
subroutine, identify the error, branch to a secondary subroutine
where the erroris cleared and resume the execution. In the example
only one error condition 1019 “Invalid Font” is taken care of, but
the same principles can be used for more errors. You can test the
example by either adding a valid font name or lifting the printhead
before running the program.

10 OPEN "console:" FOR OUTPUT AS 1

20 ONERROR GOTO 1000

30 PRPOS 50,100

40 PRTXT"HELLO"

50 PRINTFEED

60 A%=TICKS+400

70 B%=TICKS

80 IFB%<A% THEN GOTO 70 ELSE GOTO 90

90 PRINT#1:PRINT #1

100 END

1000 SOUND 880,50

1010 EFLAG%=ERR : ELINE%=ERL

1020 IF EFLAG%=1019 THEN GOTO 2000 ELSE GOTO 3000

2000 PRINT #1: PRINT #1

2010 PRINT #1, "Font missing"

2020 PRINT #1, "in line ", ELINE%;

2030 FONT "SWO30RSN": MAG 2,2 : INVIMAGE

2040 RESUME

3000 PRINT #1: PRINT #1

3010 PRINT #1, "Undefined error"

3020 PRINT #1, "Program Stops!";

3030 RESUME NEXT

PRSTAT

Another instruction that can be used in connection with error-
handling is thePRSTATfunction. In addition to returning the
current position of the insertion point (see chapter 10.1), it can also
return the printer's status in regard several conditions, using a
logical operator:

IF PRSTAT (AND 0) Ok

IF PRSTAT (AND 1) Printhead lifted

IF PRSTAT (AND 2) Label not removed (LTS only)
IF PRSTAT (AND 4) Printer out of paper

IF PRSTAT (AND 8) Printer out of transfer ribbon
IF PRSTAT (AND 16) Printhead voltage too high

IF PRSTAT (AND 32) Printer is feeding

Multiple simultaneous errors are indicated by the sum of the values
for each error, e.qg. if both the printhead is lifted (1) and the printer
Is out paper (4) and ribbon (8), it can be detected by:

IF PRSTAT (AND 13)

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 144

Chapter 16 Error Handling

16.4 Error-HandIing ERRHAND.PRG Utility Program
The ERRHAND.PRG contains routines for handling errors, man-

Program aging the keyboard and display, and for printing. Use
ERRHAND.PRG to quickly get started with your programming.

By merging ERRHAND.PRG with your program, the latter can
gain access to ERRHAND's subroutines. Do not use the lines 10—
20 and 100000-1900200 in your program, since those line numbers
are used by ERRHAND.PRG.

Example:

NEW

LOAD "XXX.PRG"

MERGE "ROM:ERRHAND.PRG"
RUN

If you have more than one application program that requires error-
handling in your printer, you will save valuable memory space by

keeping ERRHAND.PRG stored separately and merging it with

the current program directly after loading, compared with merging

ERRHAND.PRG with each program. The approximate size of

ERRHAND.PRG is 4 kilobyte.

Variables and subroutines in ERRHAND.PRG that your program
can use, or which you can modify, are:

Variables:

* NORDIS1$andNORDIS2%at line 10 contain the main display
texts. You may replace them with your own text.

» DISP1$ andDISP2$ contain the actual text that will appear on
the printer's display on line 1 and 2 respectively.

Subroutines:
+ Atline 160,000

The errors which normally may occur during printing are taken
care of:

Error 1005 Out of paper

Error 1006 No field to print

Error 1022 Head lifted

Error 1027 Out of transfer ribbon

Error 1031 Next label not found

The subroutine shows the last error that occurred, if any, and the
line number where the error was detected. The information is
directed to your terminal. Called by the statem®QSUB
160000.

» Atline 200,000
Error-handling routines, which can be called from routines
where error may occur, e.g.:
IF EFLAG% < >0 THEN GOSUB 200000

The error-handling routine can be modified to handle other
errors than those previously mentioned.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 145

Chapter 16 Error Handling

16.4 Error-Handling ERRHAND.PRG Utility Program, contd.:

Program, contd. .

At line 400,000
TheFEEDroutine executesERORMFEEIth error-checking.
Called by the stateme@®OSUB 400000

At line 500,000
ThePRINT-routine executesRRINTFEEDwith error-check-
ing. Called by the statemeBOSUB 500000

At line 600,000

This subroutine clears the printer's display and makes the display
texts stored in the variablB$SP1$ andDISP2$ appear on the

first and second line respectively in the display. Called by the
statemenGOSUB 600000

At line 700,000

The Init routine initiates error-checking, opens the console for
output and displays the main display texXt©RDIS1$and
NORDIS2$. It also sets up the some of the keys on the keyboard
(if any) and assigns subroutines to each key. Called by the
statemenGOSUB 70000Q

At line 1,500,000

The Pause> key (key No. 15) interrupts the program until the
same key is pressed a second time. Called by the statement
GOSUB 1500000

At line 1,700,000
Routine for the Rrint> key (key No. 17), that calls subroutine
500,000. Called by the statem&®SUB 1700000

At line 1,800,000
Routine for the Setup> key (key No. 18). Enters the Setup
Mode of the printer. Called by the staten@®SUB 1800000

At line 1,900,000
Routine for the Eeed> key (key No. 19), that calls subroutine
400,000. Called by the statem&®SUB 1900000

For more information, refer to the complete listing that follows.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 146

Chapter 16 Error Handling

16.4 Error-HandIing Listing of ERRHAND.PRG Utility Program
Program, contd.

10 PROGNO$ ="Ver. 1.2 92-01-10"

15 NORDIS1$ = "TEST PROGRAM" : NORDIS2$ = "VERSION 1.2"

20 GOSUB 700000 : 'Initiate

100000 'Error routine

100010 EFLAG% =ERR

100050 'PRINT EFLAG%:'Activate for debug

100060 LASTERROR% = EFLAG%

100200 RESUME NEXT

160000 'PRINT "Last error = ";LASTERROR%: 'Activate for debug
160050 'IF LASTERROR% <>0 THEN PRINT "At line ";ERL
160100 LASTERROR% =0

160200 RETURN

200000 ‘Error handling routine

200010 IF EFLAG% = 1006 THEN GOTO 200040:Formfeed instead of print
200020 LED (1) ON :LED (0) OFF : BUSY

200030 SOUND 400, 10

200040 IF EFLAGY% = 1031 THEN GOSUB 300000

200050 IF EFLAG% = 1005 THEN GOSUB 310000

200060 IF EFLAG% = 1006 THEN GOSUB 320000

200070 IF EFLAG% = 1022 THEN GOSUB 330000

200080 IF EFLAGY% = 1027 THEN GOSUB 340000

200090 DISP1$=NORDIS1$: DISP2$ = NORDIS2$
200100 GOSUB 600000

200110 LED (1) OFF : LED (0) ON : READY

200400 RETURN

300000 ‘Error 1031 Next label not found

300010 DISP1$="LABEL NOT FOUND"

300020 DISP2$="ERR NO." + STR$ (ERR)

300030 GOSUB 600000

300040 EFLAG% =0

300050 FORMFEED

300060 IF EFLAG% = 1031 THEN GOTO 300040

300200 RETURN

310000 ‘Error 1005 Out of paper

310010 DISP1$ ="OUT OF PAPER"

310020 DISP2$="ERR NO." + STR$ (ERR)

310030 GOSUB 600000

310040 IF (PRSTAT AND 1)=0 THEN GOTO 310040:'Wait until head lifted
310050 EFLAG% =0

310060 IF (PRSTAT AND 1) =0 THEN FORMFEED ELSE GOTO 310060
310070 IF EFLAG% = 1005 THEN GOTO 310040

310080 IF EFLAGY% = 1031 THEN GOSUB 300000

310200 RETURN

320000 ‘Error 1006 No field to print

320010 GOSUB 400000

320200 RETURN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 147

Chapter 16 Error Handling

16.4

330000
330010
330020
330030
330040
330050
330060
330200
340000
340010
340020
340030
340040
340050
340200
349000
400000
400010
400020
400200
400300
500000
500010
500020
500030
500040
500100
500300
600000
600010
600020
600030
600040
600200
700000
700010
700020
700030
700040
700100
700110
700120
700130
700140
700150
700160
700170
700230
700240

Error-Handling Listing of ERRHAND.PRG Utility Program, cont'd.

Program, contd.

'Error 1022 Head lifted
DISP1$ = "HEAD LIFTED"

DISP2$ ="ERR NO. " + STR$ (ERR)
GOSUB 600000

IF (PRSTAT AND 1) THEN GOTO 330040
FORMFEED

IF PCOMMAND% THEN GOSUB 500000
RETURN

'Error 1027 Out of transfer ribbon

DISP1$ ="OUT OF RIBBON"

DISP2$ ="ERR NO. " + STR$ (ERR)
GOSUB 600000

IF (PRSTAT AND 8) THEN GOTO 340040
GOSUB 1500000

IF PCOMMAND% THEN GOSUB 500000
RETURN

'Feed routine

EFLAG% =0

FORMFEED

IF EFLAG% <> 0 THEN GOSUB 200000
RETURN

'Print routine

EFLAG% =0

PCOMMAND% =1

PRINTFEED

IF EFLAG% <> 0 THEN GOSUB 200000
PCOMMAND% =0

RETURN

‘Display handler

PRINT # 10

PRINT # 10

PRINT # 10, DISP1$

PRINT # 10, DISP2$;

RETURN

'Init routine

ON ERROR GOTO 100000

OPEN "console:" FOR OUTPUT AS # 10

DISP1$ = NORDIS1$: DISP2$ = NORDIS2$

GOSUB 600000
ON KEY (15) GOSUB 1500000 : 'PAUSE
ON KEY (17) GOSUB 1700000 : 'PRINT
ON KEY (18) GOSUB 1800000 : 'SETUP
ON KEY (19) GOSUB 1900000 : 'FEED
KEY (15) ON

KEY (17) ON

KEY (18) ON

KEY (19) ON

LED (0) ON

LED (1) OFF

UBI Fingerprint 7.11 — Programmer's Guide Ed. 1

148

Chapter 16 Error Handling

16.4 Error-Handling Listing of ERRHAND.PRG Utility Program, cont'd.
Program, contd.

700300 PAUSE% =0

700500 RETURN

1500000 'Pause function

1500010 KEY (15) ON

1500020 PAUSE% = PAUSE% XOR 1

1500030 BUSY : LED (0) OFF

1500040 DISP1$ = "Press <PAUSE>" : DISP2$ = "to continue"
1500050 GOSUB 600000

1500060 IF PAUSE% = 0 THEN GOTO 1500100
1500070 SOUND 131, 2

1500080 SOUND 30000, 20

1500090 IF PAUSE% THEN GOTO 1500070
1500100 READY : LED (0) ON

1500110 DISP1$ = NORDIS1%$: DISP2$ = NORDIS2$
1500120 GOSUB 600000

1502000 RETURN

1700000 'Printkey

1700010 KEY (17) OFF

1700020 GOSUB 500000

1700030 KEY (17) ON

1700200 RETURN

1800000 'Setup key

1800010 KEY (18) OFF

1800020 LED (0) OFF

1800030 BUSY

1800040 SETUP

1800050 READY

1800060 LED (0) ON

1800080 KEY (18) ON

1800090 DISP1$ = NORDIS1$: DISP2$ = NORDIS2$
1800100 GOSUB 600000

1800200 RETURN

1900000 'Feed key

1900010 KEY (19) OFF

1900020 GOSUB 400000

1900030 KEY (19) ON

1900200 RETURN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 149

Chapter 16 Error Handling

16.4 Error-Handling Extensions to ERRHAND.PRG Utility Program
: The following subroutines are not included in ERRHAND.PRG,
Program, contd. but may be added manually to stop new input via the printer's

keyboard while a subroutine is executed:
» Turnon all keys after having completed a subroutine by issuing
the statemerOSUB 80000Q
800000 Turn all keys on
8000101% =0
800020 IF 1% > 21 THEN GOTO 800060
800030 KEY (1%) ON
800040 1% = 1% + 1
800050 GOTO 800020
800060 RETURN

» Turn off all keys before entering a subroutine by issuing the
statemenGOSUB 900000
900000 Turn all keys off
9000101% =0
900020 IF 1% > 21 THEN GOTO 900060
900030 KEY (19%) OFF
900040 1% = 1% + 1
900050 GOTO 900020
900060 RETURN

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 150

Chapter 17 Reference Lists

17. Reference Lists

17.1

Instructions in Alphabetical Order

Instruction See chapter Purpose

ABS 9.2 Returning the absolute value of a numeric expression.

ACTLEN 11.4 Returning the length of the most recently execBRINTFEED
FORMFEEDr TESTFEEDstatement.

ALIGN (AN) 10.1 Specifying which part (anchor point) of a text, bar code field, image
field, line or box will be positioned at the insertion point.

ASC 9.2 Returning the decimal ASCII value of the first character in a string
expression.

BARADJUST 15.8 Enabling/disabling automatic adjustment of bar code position in order
to avoid faulty printhead dots.

BARFONT (BF) 10.3 Specifying fonts for the printing of bar code interpretation.

BARFONT (BF) ON/OFF 10.3 Enabling/disabling the printing of bar code interpretation.

BARHEIGHT (BH) 10.3 Specifying the height of a bar code.

BARMAG (BM) 10.3 Specifying the magnification in regard of width of the bars in a bar
code.

BARRATIO (BR) 10.3 Specifying the ratio between the wide and the narrow bars in a bar
code.

BARSET 10.3 Specifying a bar code and setting additional parameters to complex bar
codes.

BARTYPE (BT) 10.3 Specifying the type of bar code.

BEEP 154 Ordering the printer to emit a beep.

BREAK 5.12 Specifying a break interrupt character separately for the keyboard and
each serial communication channel.

BREAK ON/OFF 5.12 Enabling/disabling break interrupt separately for the keyboard and each
serial communication channel.

BUSY 7.7 Ordering a busy signal, e.g. XOFF, CTS/RTS or PE, to be transmitted
from the printer on the specified communication channel.

CHDIR 6.1 Specifying the current directory.

CHECKSUM 6.9 Calculating the checksum of a range of program lines in connection
with the transfer of programs.

CHR$ 9.2 Returning the readable character from a decimal ASCII code.

CLEANFEED 11.1 Running the printer's feed mechanism.

CLEAR 6.1 Clearing strings, variables and arrays to free memory space.

CLL 11.5 Partial or complete clearing of the print image buffer.

CLOSE 6.4,7.3-7.6,8.3-8.5 Closing one or several files and/or devices for input/output.

COM ERROR ON/OFF 7.8 Enabling/disabling error handling on the specified communication
channel.

COMBUF$ 7.8 Reading the data in the buffer of the specified communication channel.

COMSET 7.8 Setting the parameters for background reception of data to the buffer
of a specified communication channel.

COMSET OFF 7.8 Turning off background data reception and emptying the buffer of the
specified communication channel.

COMSET ON 7.8 Emptying the buffer and turning on background data reception on the
specified communication channel.

COMSTAT 7.8 Reading the status of the buffer of the specified communication channel.

COPY 5.13,6.2-6.4, 8.5 Copying files.

CSUM 6.10 Calculating the checksum of an array of strings.

CuT 11.3 Activating an optional paper cutting device.

CUT ON/OFF 11.3 Enabling/disabling automatic cutting &RINTFEEDexecution and
optionally adjusting the paper feed before and after the cutting.

DATE$ 9.3,155 Setting or returning the current date.

DATEADDS$ 9.3 Returning a new date after a number of days have been added to, or
subtracted from, the current date or optionally a specified date.

DATEDIFF 9.3 Returning the difference between two dates as a number of days.

DELETE 5.4,8.1 Deleting one or several consecutive program lines from the printer's

working memory.

UBI Fingerprint 7.11 — Programmer's Guide Ed. 1

151

Chapter 17 Reference Lists

17.1 Instructions in Alphabetical Order, contd.

Instruction See chapter Purpose

DEVICES 4.10 Returning the names of all devices to the standard OUT channel.

DIM 6.10 Specifying the dimensions of an array.

DIR 10.1 Specifying the print direction.

END 5.4 Ending the execution of the current program or subroutine and closing
all OPENedfiles and devices.

EOF 7.4 Checking for an end-of-file condition.

ERL 16.3 Returning the number of the line on which an error condition has
occurred.

ERR 16.3 Returning the code number of an error that has occurred.

FIELD 75,84 Creating a single-record buffer for a random file and dividing the buffer
into fields to which string variables are assigned.

FIELDNO 11.5 Getting the current field number for partial clearing of the print buffer
by aCLL statement.

FILE& LOAD 6.6,12.2 Reception and storing of binary files in the printer's memory.

FILES 6.2,8.1,14.4 Listing the files stored in one of the printer's directories to the standard
OUT channel.

FONT (FT) 10.2 Selecting a scalabele TrueType or TrueDoc single-byte font for the
printing of the subsequeRRTXTstatements.

FONTD 10.2 Selecting a scalabele TrueType or TrueDoc double-byte font for the
printing of the subsequeRRTXTstatements.

FONTNAME$ 12.4 Returning the names of the fonts stored in the printer's memory.

FONTS 8.1,124 Returning the names of all fonts stored in the printer's memory to the
standard OUT channel.

FOR...TO...NEXT 5.9 Creating a loop in the program execution, where a counter is incremented
or decremented until a specified value is reached.

FORMAT 6.1 Formatting the printer's permanent memory, or formatting a SRAM-
type memory card to MS-DOS format.

FORMAT DATE$ 9.3 Specifying the format of the string returnedD#TES$('F") and
DATEADDS(...,"F") instructions.

FORMAT TIME$ 9.3 Specifying the format of the string returnedTWWES$("F") and
TIMEADDS$(...,"F") instructions.

FORMFEED (FF) 11.1 Activating the paper feed mechanism in order to feed out or pull back
a certain length of the paper web.

FRE 6.1 Returning the number of free bytes in the printer's temporary memory.

FUNCTEST 15.10 Performing various hardware tests.

FUNCTEST$ 15.10 Performing various hardware tests.

GET 7.5 Reading a record from a random file to a random buffer.

GOSuUB 5.7 Branching to a subroutine.

GOTO 5.6-5.7 Branching unconditionally to a specified line.

HEAD 15.8 Returning the result of a thermal printhead check.

IF..THEN...[ELSE] 55 Conditional execution controlled by the result of a numeric expression.

IMAGE LOAD 6.5,14.3 Receiving, converting and installing image and font files.

IMAGENAME$ 14.4 Returning the names of the images stored in the printer's memory.

IMAGES 8.1 Returning the names of all images stored in the printer's memory to the
standard OUT channel.

IMMEDIATE ON/OFF 54 Enabling/disabling the immediate mode of UBI Fingerprint in
connection with program editing without line numbers.

INKEY$ 7.2 Reading the first character in the receive buffer of the standard IN
channel.

INPUT (IP) 7.2 Receiving input data via the standard IN channel during the execution
of a program.

INPUT# 7.3-7.6,15.1 Reading a string of data fronO&ENeddevice or sequential file.

INPUTS$ 7.2-7.6,15.1 Returning a string of data, limited in regard of number of characters,
from the standard IN channel, or optionally fromGPENedfile or
device.

INSTR 9.2 Searching a specified string for a certain character, or sequence of

characters, and returning its position in relation to the start of the string.

UBI Fingerprint 7.11 — Programmer's Guide Ed. 1

152

Chapter 17 Reference Lists

17.1 Instructions in Alphabetical Order, contd.

Instruction See chapter Purpose

INVIMAGE () 10.2,10.4 Inversing the printing of text and images from “black-on-white” to
“white-on-black.

KEY BEEP 15.1 Resetting the frequency and duration of the sound produced by the
beeper, when any key on the printer's keyboard is pressed down.

KEY ON/OFF 15.1 Enabling/disabling a specified key on the printer's front panel to be
used in connection with @N KEY...GOSUB statement.

KEYBMAP$ 15.1 Returning or setting the keyboard map table.

KILL 5.13,6.3-6.4 Deleting a file from the printer's memory or from a DOS-formatted
SRAM memory card inserted in the memory card adapter.

LAYOUT 10.7 Handling of layout files.

LBLCOND 11.1 Overriding the paper feed setup.

LED ON/OFF 15.3 Turning a specified LED control lamp on or off.

LEFTS 9.2 Returning a specified number of characters from a given string starting
from the extreme left side of the string, i.e. from the start.

LEN 9.2 Returning the number of character positions in a string.

LET 4.7 Assigning the value of an expression to a variable.

LINE INPUT 7.2 Assigning an entire line, including punctuation marks, from the
standard IN channel to a single string variable.

LINE INPUT# 7.3-7.6,15.1 Assigning an entire line, including punctuation marks, from a sequential
file or a device to a single string variable.

LIST 54,638.1 Listing the current program completely or partially, or listing all
variables, to the standard OUT channel.

LOAD 5.13,6.3 Loading a copy of a program, residing in the current directory or in
another specified directory, into the printer's working memory.

LOC 6.4,7.4-75,7.8,8.3-85 Returning the current position i@RENedfile or the status of the
buffers in alODPENedcommunication channel.

LOF 6.4,7.4-75,7.8,83-8,5 Returning the length in bytes @RENedsequential or random file
or returning the status of the buffers in@RENedcommunication
channel.

LSET 8.4 Placing data left-justified into a field in a random file buffer.

LTS& ON/OFF 11.3 Enabling or disabling the label taken sensor.

MAG 10.2,10.4 Magnifying a font, barfont or image up to four times separately in regard
of height and width.

MAP 9.1 Changing the ASCII value of a character when received on the
standard IN channel, or optionally on another specified communication
channel.

MERGE 6.3 Merging a program in the printer's current directory, or optionally in
another specified directory, with the program currently residing in the
printer's working memory.

MID$ 9.2 Returning a specified part of a string.

NAME DATE$ 9.3 Formatting the month parameter in return stringdATES("F")
andDATEADD$(...,"F")

NAME WEEKDAY$ 9.3 Formatting the day parameter in return string BEKDAY.$

NASC 9.1 Selecting a single-byte character set.

NASCD 9.1 Selecting a double-byte character set according to the Unicode standard.

NEW 5.4,6.3 Clearing the printer's working memory in order to allow a new program
to be created.

NORIMAGE (NI) 10.2,10.5 Returning to normal printing afterldivIMAGE statement has been
issued.

ON BREAK GOSUB 5.8,5.12 Branching to a subroutine, when a break interrupt instruction is received.

ON COMSET GOSUB 5.8,7.8 Branching to a subroutine, when the background reception of data on
the specified communication channel is interrupted.

ON ERROR GOTO 5.8, 16.3 Branching to an error-handling subroutine when an error occurs.

ON GOSUB 5.8 Conditional branching to one or several subroutines.

ON GOTO 5.8 Conditional branching to one of several lines.

ON KEY GOSUB 5.8,15.1 Branching to a subroutine when a specified key on the printer's front

panel is activated.

UBI Fingerprint 7.11 — Programmer's Guide Ed. 1

153

Chapter 17 Reference Lists

17.1 Instructions in Alphabetical Order, contd.

Instruction See chapter Purpose

ON/OFF LINE 7.7 Controlling the SELECT signal on the Centronics communication
channel.

OPEN 6.4, 7.3-7.6, 8.3-8.5, 15.2 Opening a file or device — or creating a new file — for input, output or
append, allocating a buffer and specifying the mode of access.

OPTIMIZE "BATCH" ON/OFF 11.5 Enabling/disabling optimizing for batch printing.

PCX2BMP 6.5, 14.3 Converting and intalling image files in .PCX format.

PORTIN 7.10 Reading the status of a port on the Industrial Interface Board.

PORTOUT ON/OFF 7.10 Setting one of four relay port or one of eight optical ports on an Industrial
Interface Board to either on or off.

PRBAR (PB) 10.3 Providing input data to a bar code.

PRBOX (PX) 10.5 Creating a box.

PRIMAGE (PM) 10.4 Selecting an image stored in the printer's memory.

PRINT (?) 8.1 Printing data to the standard OUT channel.

PRINT KEY ON/OFF 11.3 Enabling/disabling printing of a label by pressing the Print key.

PRINT# 8.3,8.5,15.2 Printing of data to a speciENeddevice or sequential file.

PRINTFEED (PF) 11.3 Printing and feeding out one or a specified number of labels, tickets,
tags or portions of strip, according to the printer's setup.

PRINTONE 8.1 Printing characters specified by their ASCII values to the standard OUT
channel.

PRINTONE# 8.3,85 Printing characters specified by their ASCIl values to a device or
sequential file.

PRLINE (PL) 10.6 Creating a line.

PRPOS (PP) 10.1 Specifying the insertion point for a line of text, a bar code, an image, a
box, or a line.

PRSTAT 10.1, 16.3 Returning the printer's current status or, optionally, the current position
of the insertion point.

PRTXT (PT) 10.2 Providing the input data for a text field, i.e. a line of text.

PUT 8.4 Writing a given record from the random buffer to a given random file.

RANDOM 9.4 Generating a random integer within a specified interval.

RANDOMIZE 9.4 Reseeding the random number generator, optionally with a specified
value.

READY 7.7 Ordering ready signal, e.g. XON, CTS/RTS or PE, to be transmitted
from the printer on the specified communication channel.

REBOOT 5.14 Restarting the printer.

REDIRECT OUT 6.4,8.2 Redirecting the output data to a created file.

REM () Adding headlines and explanations to a program without including them
in the execution.

REMOVE IMAGE 12.2-12.3,14.4 Removing a specified image from the printer's memory.

RENUM 5.4 Renumbering the lines of the program currently residing in the printer's
working memory.

RESUME 5.8, 16.3 Resuming program execution after an error-handling subroutine has
been executed.

RETURN 5.7 Returning to the main program after having branched to a subroutine
because of ®@OSUBtatement.

RIGHT$ 9.2 Returning a specified number of characters from a given string starting
from the extreme right side of the string, i.e. from the end.

RSET 8.4 Placing data right-justified into a field in a random file bulffer.

RUN 5.11,6.3 Starting the execution of a program.

SAVE 5.13,6.3 Saving a file in the printer's memory or optionally in a DOS-formatted
memory card.

SET FAULTY DOT 15.8 Marking one or several dots on the printhead as faulty, or marking all
faulty dots as correct.

SETSTDIO 7.1 Selecting standard IN and OUT communication channel.

SETUP 15.6 Entering the printer's Setup Mode, changing the setup by means of a

setup file or setup string, or creating a setup file containing the printer's
current setup values.

SGN 9.2 Returning the sign (positive, zero or negative) of a specified numeric
expression.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 154

Chapter 17 Reference Lists

17.1

Instructions in Alphabetical Order,

cont'd.

Instruction See chapter Purpose

SORT 6.10 Sorting a one-dimensional array.

SOUND 15.4 Making the printer's beeper produce a sound specified in regard of
frequency and duration.

SPACE$ 9.2 Returning a specified number of space characters.

SPLIT 6.10 Splitting a string into an array according to the position of a specified
separator character and returning the number of elements in the array.

STORE IMAGE 14.3 Setting up parameters for storing an image in the printer's memory.

STORE INPUT 14.3 Receiving and storing protocol frames of image data in the printer's
memory.

STORE OFF 14.3 Terminating the storing of an image and resetting the storing parameters.

STR$ 9.2 Returning the string representation of a numeric expression.

STRINGS 9.2 Repeatedly returning the character of a specified ASCII value, or the
first character in a specified string

SYSVAR 7.7,14.3,15.7-15.9, 16.1 Reading or setting various system variables.

TESTFEED 11.1 Adjusting the label stop sensor while perfoming a number of formfeeds.

TICKS 9.3 Returning the time that has passed since the last power-up in the printer,
expressed in number of “Ticks” (1 Tick = 0.01 seconds).

TIMES$ 9.3,155 Setting or returning the current time.

TIMEADD$ 9.3 Returning a new time after a number of seconds have been added to, or
subtracted from, the current time or optionally a specified time.

TIMEDIFF 9.3 Returning the difference in number of seconds between two specified
moments of time in number of seconds.

TRANSFER KERMIT 6.8 Transferring of data files using Kermit communication protocol.

TRANSFER STATUS 6.8 Checking laZERANSFER KERMI®peration.

TRANSFERS$ 6.4 Executing a transfer from source to destination as specified by a
TRANSFERSE$tatement.

TRANSFERSET 6.4 Entering setup for (RRANSFER$unction.

TRON/TROFF 16.2 Enabling/disabling tracing of the program execution.

VAL 9.2 Returning the numeric representation of a string expression.

VERBON/VERBOFF 7.7 Specifying the verbosity level of the communication from the printer
on the standard OUT channel (serial communication only).

VERSION$ 1511 Returning the version of the firmware, printer family, or type of CPU
board

WEEKDAY 9.3 Returning the weekday of a specified date.

WEEKDAY$ 9.3 Returning the name of the weekday from a specified date.

WEEKNUMBER 9.3 Returning the number of the week for a specified date.

WHILE...WEND 5.9 Executing a series of statements in a loop providing a given condition
is true.

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 155

Chapter 17 Reference Lists

17.2

Instructions by Field of Application

Instruction Abbr. Type Purpose

SETUP AND PREFERENCES

General UBI Fingerprint Control:

CHDIR<scon> Stmt Change current directory
MAP[<nexp>,]<nexp>,<nexp> Stmt Remapping

NASC<nexp> Stmt Select single-byte character set
NASCD<nexp> Stmt Select double-byte character set
REBOOT Stmt Restart printer

SETUP [[WRITE<sexp>] | [<sexp>]| [<sexp>]] Stmt Printer setup

SYSVAR(<nexp>) Array Read or set various system variables
Setting the Clock/Calendar:

DATES$=<sexp> Var Setthe date

TIME$=<sexp> Var Setthe time

OPERATOR INTERFACE

Keyboard Setup:

KEY(<nexp>)ON|OFF Stmt Enable/disable key on printer's keyboard
ON KEY(<nexp>)GOSUB<ncon>|<line label> Stmt Key-initiated branching

KEY BEEP<nexp>,<nexp> Stmt Set frequency and duration of key response
KEYBMAPS(<nexp>)=<sexp> Var Set the keyboard map table

Output to Display:

OPEN "console:" FOR OUTPUT AS[#]<nexp> Stmt Open display for output
PRINT#<nexp>[,<<nexp>|<sexp>>[<,[;><<nexp|<sexp>>...][;]] Stmt Print data to display

CLOSE [#]<nexp> Stmt Close display for output

LED Control Lamps:

LED<nexp>ON|OFF Stmt - Turn LED on or off

Audible Signals:

BEEP Stmt Emit a beep

SOUND<nexp>,<nexp> Stmt Produce sound

Breaking Program Execution;

BREAK<nexp>,<nexp> Stmt Specify break interrupt character
BREAK <nexp> ON|OFF Stmt Enable/disable break interrupt

ON BREAK<nexp>GOSUB<ncon>[<line label> Stmt Branching at break interrupt

PRINTER CHECKOUT AND CONTROL

Keyboard:

<svar> = KEYBMAP$(<nexp>) Var Read keyboard mapping

Memory:

CLEAR Stmt Clear strings, variables and arrays
FORMAT<sexp>[,<nexp>[,<nexp>]|[,A] Stmt Format "c:" memory or "card1:"
FRE(<<nexp>|<sexp>>) Func Return number of free bytes in "tmp:"
FUNCTEST<sexp>,<svar> Stmt Testing the hardware
FUNCTEST$(<sexp>) Func Testing the hardware

KILL<sexp> Stmt Delete file

REMOVE IMAGE<sexp> Stmt Remove image from memory
Odometer:

SYSVAR(32) Array Read kilometre counter

Printhead:

BARADJUST<nexp>,<nexp> Stmt Enable/disable auto bar code repositioning
HEAD(<nexp>) Func Checking printhead dots
FUNCTEST<sexp>,<svar> Stmt Checking printhead
FUNCTEST$(<sexp>) Func Checking the printhead

SET FAULTY DOT<nexp>[,<nexp>...] Stmt Marking dots as faulty for BARADJUST
SYSVAR(21|22) Array Read printhead density or number of dots
Transfer Ribbon:

SYSVAR(13]20[23) Array Read counter, mode or ribbon end sensor

UBI Fingerprint 7.11 — Programmer's Guide Ed. 1

156

Chapter 17 Reference Lists

17.2

Instructions by Field of Application,

cont'd.

Instruction

Abbr. Type Purpose

PROGRAMMING:

Managing Programs and Files:
CHECKSUM(<nexp>,<nexp>)
COPY<sexp>[,<sexp>]
KILL<sexp>

LOAD<scon>

MERGE<scon>

NEW

SAVE<scon>[,P|L]

Listings:

DEVICES
FILES[<sexp>][,Al
FONTNAMES(<nexp>)
FONTS
IMAGENAMES(<nexp>)
IMAGES

LIST[[<ncon>[- <ncon>]||,V]
VERSION$[(<nexp>)]

Program Editing and Execution:
DELETE<ncon>[-<ncon>]
END

IMMEDIATE ON|OFF
LIST[[<ncon>[- <ncon>]||,V]
NEW

REM<remark>
RENUM[<ncon>][,[<ncon>][,<ncon>]|
RUN[<<scon>|<ncon>>]
SAVE<scon>[,P|L]

Data Manipulation;

ABS(<nexp>)

ASC(<sexp>)

CHR$(<nexp>)
INSTR([<nexp>,|<sexp>,<sexp>]
LEFT$(<sexp>,<nexp>)
LEN(<sexp>)
[LET]<<nvar>=<nexp>>|<<svar>=<sexp>>
MID$(<sexp>,<nexp>[,<nexp>])
RANDOM (<nexp>,<nexp>)
RANDOMIZE[<nexp>]
RIGHT$(<sexp>,<nexp>)
SGN(<nexp>)

SPACE$(<nexp>)

STR$(<nexp>)
STRINGS$(<nexp>,<<nexp>|<sexp>>)
VAL(<sexp>)

Branching and Conditionals:
FOR<nvar>=<nexp>TO<nexp>[STEP<nexp>)INEXT[<nvar>|
GOSUB<ncon>[<line label>

GOTO<ncon><line label>
IF<nexp>[,]THEN<stmt>[ELSE<stmt>]

ON <nexp>GOSUB<ncon>[<line label>[,<ncon>|<line label>...]
ON <nexp>GOTO<ncon>|<line label>[,<ncon>|<line label>...]
RETURN[<ncon>|<line label>]

WHILE<nexp>0 <stmt>0 [...<stmt>]0 WEND

Func
Stmt
Stmt
Stmt
Stmt
Stm

Stmt

Stmt
Stmt
Func
Stmt
Func
Stmt
Stmt
Func

Stmt
Stmt
Stmt
Stmt
Stmt
' Stmt
Stmt
Stmt
Stmt

Func
Func
Func
Func
Func
Func
Stmt
Func
Func
Stmt
Func
Func
Func
Func
Func
Func

Stmt
Stmt
Stmt
Stmt
Stmt
Stmt
Stmt
Stmt

Calculate checksum at program transfer
Copy file

Delete file

Load program

Merge programs

Clear the working memory

Save program

List devices to standard 1/O channel

List files to standard 1/O channel

Return names of fonts in printer's memory
List all fontnames to standard I/O channel
Return names of images in printer's memory
List all imagenames to standard I/O channel
List current program or all variables to std /O
Returns F/W or HW version or printer model

Delete program lines

Terminate program execution

Start/stop writing program w/o line numbers
List current program or all variables to std /O
Clear the working memory

Remark

Renumber program lines

Execute program

Save program

Return the absolute value of an expression
Return ASCII code for 1:st char. in string
Convert ASCII code

Return position of character in string

Return characters from left side of string
Return number of characters in string
Assign a value to a variable

Return part of string

Generate a random integer

Reseed random number generator

Return characters from right side of string
Return sign of numeric expression

Return specified number of space characters
Return string representation of num. expr.
Return a number of repeated characters
Return numeric representation of string expr.

Creating a program loop

Branch to subroutine

Unconditional branching

Conditional execution

Cond. branching to one of many subroutines
Conditional branching to one of several lines
Return from subroutine

Conditional execution of loop of statements

UBI Fingerprint 7.11 — Programmer's Guide Ed. 1

157

Chapter 17 Reference Lists

17.2 Instructions by Field of Application, contd.

Instruction Abbr. Type Purpose

PROGRAMMING, contd:

Arrays:

CSUM<ncon>,<svar>,<nvar> Stmt Calculate checksum of array of strings
DIM<<nvar>|<svar>>(<nexp>[,<nexp>...])...,<<nvar>|<svar>>(nexp>[,<nexp>...))] Stmt Set array dimensions
SORT<<nvar>|<svar>>,<nexp>,<nexp>,<nexp> Stmt Sort a one-dimensional array
SPLIT(<sexp>,<sexp>,<nexp>) Func Split a string into an array
Clock/Calendar Facilities:

<svar>=DATES[("F")] Var Read the date

<svar>=TIMES[("F")] Var Read the time
DATEADDS[(<sexp>,]<nexp>[,"F']) Func Add days to a date
TIMEADDS](<sexp>,]<nexp>[,"F']) Func Add seconds to a time
DATEDIFF(<sexp>,<sexp>) Func Calculate difference between dates
TIMEDIFF(<sexp>,<sexp>) Func Calculate difference between times
FORMAT DATE$<sexp> Stmt Specify date format

FORMAT TIMES$<sexp> Stmt Specify time format

NAME DATE$<nexp>,<sexp> Stmt Specify names of the months

NAME WEEKDAY$<nexp>,<sexp> Stmt Specify names of the weekdays
WEEKDAY (<sexp>) Func Return weekday of a date
WEEKDAY$(<sexp>) Func Return name of the weekday for a date
WEEKNUMBER(<sexp>) Func Return weeknumber for a date

TICKS Func Retumn time passed since startup
Error-handling:

ERL Func Return number of line with error

ERR Func Return error code number

ON ERROR GOTO<ncon>|<line label> Stmt Branch at error

PRSTAT[(<nexp>)] Func Returns printer status or current X/Y position
RESUME[<<ncon>|<line label>[<NEXT>|<0>>] Stmt Resume program execution after error
SYSVAR(19) Array Set or return type of error message
TRON Stmt Enable tracing of program execution
TROFF Stmt Disable tracing of program execution
COMMUNICATION:

Communication Control:

BUSY[<nexp>] Stmt Send busy signal on communication channel
OFF LINE<nexp> Stmt SELECT signal low (Centronics)

ON LINE<nexp> Stmt SELECT signal high (Centronics)
READY[<nexp>] Stmt Send ready signal on communication channel
REDIRECT OUT[<sexp>] Stmt Redirect output data to file
SETSTDIO<nexp>[,<nexp>] Stmt Set standard I/O channels
SYSVAR(18) Array Set verbosity level

SYSVAR(25) Array Select type of Centronics communication
VERBOFF Stmt Verbosity off

VERBON Stmt Verbosity on

Background Communication;

COM ERROR<nexp>ON|OFF Stmt Enable/disable error handling
COMBUF$(<nexp>) Func Read communication buffer
COMSET<nexp>,<sexp>,<sexp>,<Sexp>,<sexp>,<nexp> Stmt Set communication parameters
COMSET<nexp>ON|OFF Stmt Turn on/off background data reception
COMSTAT(<nexp>) Func Read communication buffer status

ON COMSET<nexp>GOSUB<nexp>|<line label> Stmt Branch at background comm. interrupt

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 158

Chapter 17 Reference Lists

17.2

Instructions by Field of Application,

cont'd.

Instruction Abbr. Type Purpose

FILE TRANSFER:

Binary Files:

FILE& LOAD[<nexp>,|<sexp>,<nexp>[,<nexp>] Stmt Receive and store binary files

TRANSFER K[ERMIT]<sexp>[,<sexp>[,<sexp>[,<sexp>]l] Stmt Data transfer using Kermit protocol
TRANSFER S[TATUS]<nvar><svar> Stmt Check last TRANSFER KERMIT execution
Data Files:

TRANSFER$(<nexp>) Func Execute transfer and set time-out
TRANSFERSET[#]<nexp> [#l<nexp>,<sexp>[,<nexp>] Stmt Enter setup for file transfer using TRANSFER$S
Font Files:

FILE& LOAD[<nexp>,<sexp><nexp>[,<nexp>] Stmt Receive and store font files (installed after restart)
IMAGE LOADI[<nexp>,|<sexp>,<nexp>,<sexp>[,<nexp>] Stmt Receive, convert and install fonts
TRANSFER K[ERMIT]<sexp>],<sexp>[,<sexp>[,<sexp>]l] Stmt Transfer, convert and install fonts
TRANSFER S[TATUS]<nvar><svar> Stmt Check last TRANSFER KERMIT execution
Image Files:

IMAGE LOAD[<nexp>,|<sexp>,<nexp>,<sexp>[,<nexp>] Stmt Receive, convert and install .PCX images
RUN “pex2bmp [H] [v] <scon>[<scon>]" - Convert and install image files in .PCX format
STORE IMAGE[RLL][KILL]<sexp>,<nexp>,<nexp>,[<nexp>],<sexp> Stmt Set up image storage parameters

STORE INPUT<nexp>[,<nexp>| Stmt Receiving and storing image data

STORE OFF Stmt End storing of image data

SYSVAR(1617) Array Read no. of bytes/frames received

INPUT TO UBI FINGERPRINT

Input from Standard IN Channel:

INKEY$ Func Read 1:st character from std IN channel
INPUT[<scon><;|>|<<nvar>|<svar>>[,<<nvar>|<svar>>..] IP Stmt Input to variables
INPUT$(<nexp>[,<nexp>]) Func Input, limited no. of characters

LINE INPUT[<scon>;|<svar> Stmt Input, entire line

Input from Host on Any Channel:

CLOSE[[#]<nexp>[,[#<nexp>...]] Stmt Close device
INPUT#<nexp>,<<nvar>|<svar>>[,<<nvar>|<svar>...] Stmt Input to variables
INPUT$(<nexp>[,<nexp>]) Func Input, limited no. of characters

LINE INPUT#<nexp>,<svar> Stmt Input, entire line

LOC(<nexp>) Func Remaining no. of characters in receive buffer
LOF(<nexp>) Func Remaining free space in receive buffer
OPEN<sexp>FOR INPUT AS[#]<nexp> Stmt Open device

Input from Sequential File:

CLOSE[[#]<nexp>[,[#<nexp>...] Stmt Close file

EOF(<nexp>) Func End of file

INPUT#<nexp> <<nvar>|<svar>>[,<<nvar>|<svar>...] Stmt Input to variables
INPUT$(<nexp>[,<nexp>]) Func Input, limited no. of characters

LINE INPUT#<nexp>,<svar> Stmt Input, entire line

LOC(<nexp>) Func Return current position in file

LOF(<nexp>) Func Return length of file

OPEN<sexp>FOR INPUT ASJ#]<nexp> Stmt Open file

Input from Random File:

CLOSE[[#]<nexp>[,[#<nexp>...]] Stmt Close file
FIELD[#]<nexp>,<nexp>AS<svar>[,<nexp>AS<svar>..] Stmt Create a buffer for a random file
GET[#<nexp>,<nexp> Stmt Read rec. from random file to random buffer
LOC(<nexp>) Func Return current position in file or buffer
LOF(<nexp>) Func Return length of file
OPEN<sexp>AS[#]<nexp>[LEN=<nexp>] Stmt Open a random file

Input from Printer's Keyboard:

CLOSE [#]<nexp> Stmt Close keyboard for input
INPUT#<nexp>,<<nvar>|<svar>>[,<<nvar>|<svar>...] Stmt Input to variables
INPUT$(<nexp>[,<nexp>]) Func Input, limited no. of characters

LINE INPUT#<nexp>,<svar> Stmt Input, entire line

OPEN"console:" FOR INPUT AS[#]<nexp> Stmt Open keyboard for input

UBI Fingerprint 7.11 — Programmer's Guide Ed. 1

159

Chapter 17 Reference Lists

17.2 Instructions by Field of Application, contd.

Instruction Abbr. Type Purpose

INPUT TO UBI FINGERPRINT, cont'd:

Industrial Interface:

PORTIN(<nexp>) Func Reading status of a specified port
PORTOUT(<nexp>)ON|OFF Stmt Set the relay on a specified port

OUTPUT FROM UBI FINGERPRINT
Output to Standard OUT Channel

PRINT[<<nexp>|<sexp>>[<,|;><<nexp>|<sexp>>...][]] ? Stmt Print data to standard I/O channel
PRINTONE[<nexp>[<,|;><nexp>..][]] Stmt Print ASCII characters to std I/O channel
Output to Any Communication Channel:
CLOSE[[#]<nexp>[,[#<nexp>...]] Stmt Close device
PRINT#<nexp>[,<<nexp>|<sexp>>[<,|;><<nexp|<sexp>>..][]] Stmt Print data to device
PRINTONE#<nexp>[,<nexp>[<,|;><nexp>...][;]] Stmt Print ASCII characters to device
LOC(<nexp>) Func Remaining free bytes in transmitter buffer
LOF(<nexp>) Func Remaining no. of char. in transmitter buffer
OPEN<sexp>FOR <OUTPUT|APPEND>]AS[#]<nexp> Stmt Open device
Output to a Sequential File:
CLOSE[[#]<nexp>[,[#<nexp>...] Stmt Close file
PRINT#<nexp>[,<<nexp>|<sexp>>[<,|;><<nexp|<sexp>>...][;]] Stmt Print data to sequential file
PRINTONE#<nexp>[,<nexp>[<,|;><nexp>...][]]] Stmt Print ASCII characters to sequential file
LOC(<nexp>) Func Current position in file
LOF(<nexp>) Func Length of file
OPEN<sexp>[FOR <OUTPUT|APPEND>]AS[#]<nexp> Stmt Open file
Output to Random File:
CLOSE[[#]<nexp>[,[#<nexp>...]] Stmt Close file
FIELD[#]<nexp>,<nexp>AS<svar>[,<nexp>AS<svar>.., Stmt Create a buffer for a random file
LOC(<nexp>) Func Current position in file
LOF(<nexp>) Func Length of file
LSET<svar>=<sexp> Stmt Place data in random file buffer (left justified)
PUT[#]<nexp><nexp> Stmt White rec. from random buffer to random file
OPEN<sexp>AS[#]<nexp>[LEN=<nexp>] Stmt Open a random file
RSET<svar>=<sexp> Stmt Place data in random file buffer (right justified)
FORMATTING AND PRINTING
General Formatting Instructions:
ALIGN<nexp> AN Stmt Alignment
DIR<nexp> Stmt Select print direction
PRPOS<nexp>,<nexp> PP Stmt Set coordinates for insertion point
LAYOUT][F,[<sexp>,<sexp>,<svar>|<sexp>,<nvar>|<sexp> Stmt Creating and using layout files
Text Printing:
INVIMAGE Il Stmt Inverse image printing
MAG<nexp>,<nexp> Stmt Magnification of font (obsolete)
NORIMAGE NI Stmt Return to normal image printing
FONT<sexp>[,<nexp>[,<nexp>]| FT Stmt Select single-byte font
FONTD<sexp>[,<nexp>[,<nexp>]| Stmt Select double-byte font
PRTXT<<nexp>|<sexp>>[;<<nexp>|<sexp>>..][] PT Stmt Input data to text field
Bar Code Printing:
BARFONTI#<ncon>,J<sexp>[,nexp>[,<nexp>[,<nexp>[,nexp>[,nexp[[ON] ~ BF Stmt Specify bar code interpretation fonts
BARFONT ON BFON Stmt Enable bar code Interpretation
BARFONT OFF BF OFF Stmt Disable bar code interpretation
BARHEIGHT<nexp> BH Stmt Bar code height
BARMAG<nexp> BM Stmt Bar code magnification
BARRATIO<nexp>,<nexp> BR Stmt Wide/narrow bar ratio
BARSET[#<ncon>,][<sexp>[,<nexp>[,<nexp>[,<nexp>[,<nexp>[,<nexp>

[:<nexp>[,<nexp>[,<nexp>[,<nexp>[,<nexp>] 1IN Stmt Specifying complex bar codes
BARTYPE<sexp> BT Stmt Bar code type
MAG<nexp>,<nexp> Stmt Magnification of barfont (obsolete)
PRBAR<<sexp>|<nexp>> PB Stmt Input data to bar code field

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 160

Chapter 17 Reference Lists

17.2 Instructions by Field of Application, contd.

Instruction Abbr. Type Purpose

FORMATTING AND PRINTING, contd:

Image and Graphics Printing:

INVIMAGE Il Stmt Inverse image printing
MAG<nexp>,<nexp> Stmt Magnification of image

NORIMAGE NI Stmt Return to normal image printing
PRBOX<nexp>,<nexp>,<nexp> PX Stmt Create a box

PRIMAGE<sexp> PM Stmt Select a preprogrammed image
PRLINE<nexp>,<nexp> PL Stmt Create a line

Printing and Paper Feed Contral:

ACTLEN Func Read length of last paper feed
CLEANFEED<nexp> Stmt Running the printer's feed mechanism
CLL[<nexp>] Stmt Clear print buffer

CuT Stmt Activate optional cutting device

CUT <nexp> ON|OFF Stmt Enable/disable automatic cut-off
FIELDNO Func Get current field number for CLL
FORMFEED[<nexp>] FF Stmt Paper feed

LBLCOND<nexp>,<nexp> Stmt Overriding paper feed setup

LTS& ON|OFF Stmt Enable/disable label taken sensor
OPTIMIZE "BATCH" ON|OFF Stmt Enable/disable optimizing for batch printing
PRINT KEY ON|OFF Stmt Enable/disable PRINTFEED using Print key
PRINTFEED<nexp> PF Stmt Print and feed out label or batch of labels
SYSVAR(28) Array Erase paper feed data

TESTFEED Stmt Auto adjustment of label stop sensor

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 161

Notes

UBI Fingerprint 7.11 — Programmer’s Guide Ed. 1 162

	1. Introduction
	1.1 Contents
	1.2 Preface
	1.3 News in UBI Fingerprint 7.11

	2. Getting Started
	 2.1 Computer Connection
	2.2 Check Paper Supply
	2.3 Turn On the Printer
	2.4 UBI Shell Startup Program
	2.5 No Startup Program
	2.6 Custom-Made Startup Program
	2.7 Breaking a Startup Program
	2.8 Communications Test

	3. Creating a Simple Label
	3.1 Introduction
	3.2 Printing a Box
	3.3 Printing an Image
	3.4 Printing a Bar Code
	3.5 Printing Human Readables
	3.6 Printing Text
	3.7 Listing the Program
	3.8 Changing a Program Line
	3.9 Saving the Program
	3.10 Error Handling
	3.11 Renumbering Lines
	3.12 Merging Programs
	3.13 Using the Print Key

	4. Terminology and Syntax
	4.1 Lines
	4.2 Statements
	4.3 Functions
	4.4 Other Instructions
	4.5 Expressions
	4.6 Constants
	4.7 Variables
	4.8 Keyword List
	4.9 Operators
	4.10 Devices

	5. UBI Fingerprint Programming
	5.1 Introduction
	5.2 Editing Methods
	5.3 Immediate Mode
	5.4 Programming Mode
	5.5 Conditional Instructions
	5.6 Unconditional Branching
	5.7 Branching to Subroutines
	5.8 Conditional Branching
	5.9 Loops
	5.10 Program Structure
	5.11 Execution
	5.12 Breaking the Execution
	5.13 Saving the Program
	5.14 Rebooting the Printer

	6. File System
	6.1 Printer's Memory
	6.2 Files
	6.3 Program Files
	6.4 Data Files
	6.5 Image Files
	6.6 Font Files
	6.7 Transferring Text Files
	6.8 Transferring Binary Files using Kermit
	6.9 Transferring Files Between Printers
	6.10 Arrays

	7. Input to UBI Fingerprint
	7.1 Standard I/O Channel
	7.2 Input from Host (std IN Channel only)
	7.3 Input from Host (Any Channel)
	7.4 Input from a Sequential File
	7.5 Input from a Random File
	7.6 Input from Printer's Keyboard
	7.7 Communication Control
	7.8 Background Communication
	7.9 RS 422 Communication
	7.10 External Equipment

	8. Output from UBI Fingerprint
	8.1 Output to Std OUT Channel
	8.2 Redirecting Output from a Std OUT Channel to File
	8.3 Output and Append to Sequential Files
	8.4 Output to Random Files
	8.5 Output to Communication Channels
	8.6 Output to Display

	9. Data Handling
	9.1 Preprocessing Input Data
	9.2 Input Data Conversion
	9.3 Date and Time
	9.4 Random Number Generation

	10. Label Design
	10.1 Creating a Layout
	10.2 Text Field
	10.3 Bar Code Field
	10.4 Image Field
	10.5 Box Field
	10.6 Line Field
	10.7 Layout Files

	11. Printing Control
	11.1 Paper Feed
	11.2 Printing
	11.3 Length of Last Feed Operation
	11.4 Batch Printing

	12. Fonts
	12.1 Font Types
	12.2 Single-byte Fonts
	12.3 Double-byte Fonts
	12.4 Font Direction, Size and Slant
	12.5 Standard Fonts
	12.6 Old Font Names
	12.7 Adding Fonts
	12.8 Listing Fonts
	12.9 Removing Fonts
	12.10 Font Aliases

	13. Bar Codes
	13.1 Standard Bar Codes
	13.2 Setup Bar Codes

	14. IMAGES
	14.1 Images vs Image Files
	14.2 Standard Images
	14.3 Downloading Images Files
	14.4 Listing Images
	14.5 Removing Images

	15. Printer Function Control
	15.1 Keyboard
	15.2 Display
	15.3 LED Control Lamps
	15.4 Buzzer
	15.5 Clock/Calendar
	15.6 Printer Setup
	15.7 System Variables
	15.8 Printhead
	15.9 Transfer Ribbon
	15.10 Memory Test
	15.11 Version Check

	16. Error-Handling
	16.1 Standard Error-Handling
	16.2. Tracing Programming Errors
	16.3 Creating an Errpr-Handling Routine
	16.4 Error-Handling Program

	17. Reference Lists
	17.1 Instructions in Alphabetical Order
	17.2 Instructions by Field of Application

